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SUMMARY

Ourlongtermgoalis to developtechniquesto achievedetachedsolidificationreliablyandreproducibly,
in orderto producecrystalswith fewerdefects. To achievethis goal,it is necessaryto understand
thoroughlythephysicsof detachedsolidification.It wastheprimaryobjectiveof thecurrentprojectto
makeprogresstowardthiscompleteunderstanding.

The productsof this grant are attached.Theseinclude4 papersand a preliminarysurveyof the
observationsof detachedsolidificationin space.We havesuccessfullymodeledsteadystatedetached
solidification,examinedthe stabilityof detachment,anddeterminedthe influenceof buoyancy-driven
convectionunderdifferentconditions.

Directionalsolidificationin microgravityhasoften ledto ingotsthat grew with little or no contact
with the ampoulewall. When this occurred,crystallographicperfection was usually greatly
improved-- oftenby severalordersof magnitude.Indeed,under theSovietmicrogravityprogram
the major objective was to achievedetachedsolidificationwith its resulting improvementin
perfectionandproperties. Unfortunately,until recentlythe true mechanismsunderlyingdetached
solidificationwereunknown. As a consequence,flight experimentsyieldederraticresults. Within
the past threeyears,we havedevelopeda new theoreticalmodel that explainsmanyof the flight
results. This model gives rise to predictionsof the conditions required to yield detached
solidification.

A. Observations of detached solidification in microgravity

Beginning with Skylab in 1974, many investigators have found that directional solidification in

microgravity often yielded ingots that appear to have grown without being in intimate contact with
their containers. These results are summarized in the table given in Attachment A. A wide range

of surface features and behavior have been observed. We have classified these into the categories

shown below. Note that a given ingot might display several of these features along its length, but

not all of them.

.

2.

.

4.

5.

The ingot easily slid out of its container, whereas sticking was observed when solidification

was carried out on earth under otherwise identical conditions.

On its surface, the ingot had isolated voids or bubbles of various sizes, depths and contact

angles with the ampoule wall. (Such surface bubbles are also frequently seen on terrestrially

solidified materials.)

With a triangular or rectangular cross-section ampoule, the ingot had cylindrical detached

surfaces in the comers and a fiat surface in contact the wall over most of each face.

With an ampoule containing grooves machined in it, the ingot contacted only the peaks of

the grooves.

After correcting for thermal contraction, there remained a gap of about 1 to 60 _tm between

the ingot and the ampoule wall around the entire periphery. Irregular narrow ridges

maintained limited contact with the ampoule wall and were predominantly axial. A variety

of features were seen in the detached regions, including microfacets and periodic waves or

lines.



, There was a gap of up to several mm between the ingot and the wall, typically with a wavy

surface and sometimes forming an hourglass-shaped neck adjacent to the seed. Although

this gap generally extended around the entire periphery, sometimes it was confined to a

portion of the surface.

For semiconductors, the last portion of the ingot to freeze often replicated the surface of the

ampoule, showing that contact had been intimate (as on earth).

Here, we are concemed primarily with 5 and 6 above, as these differ from all prior terrestrial

experience and were completely unexpected prior to Skylab. Behaviors 1 and 2 often occur on

earth. Behaviors 3 and 4 are not surprising, as one would not expect non-wetting (high contact

angle) liquids to penetrate cavities.

Although detached solidification has been observed predominantly with semiconductors,
Attachment A shows that it has also been observed with metals and inorganic compounds. This

apparent predominance may reflect only the fact that most flight experiments on directional

solidification have been performed on semiconductors.

Detached solidification has been observed at both fast and slow freezing rates. Sometimes it

occurred with one type of dopant and not with others. The type of detachment, indeed even

whether detachment occurred or not, has not been reproducible.

Some investigators have chosen to avoid detached solidification by using a spring to press a piston

or plug tightly against the end of the melt. This strategy appears to have been successful. On the

other hand, detachment has occurred nonetheless when a plug only lightly contacted the end of the

feed ingot. We can explain these observations, in a fashion similar to that used to predict the

influence of gravity on detached solidification (see Attachment G).

It has been claimed that detachment is sensitive to the residual acceleration. Unfortunately there

have been so few measurements of residual acceleration, particularly the average value, that one

cannot judge the validity of this claim from experimental evidence alone. Our theoretical treatment
shown in Attachment G leads us to believe that acceleration can enhance detachment if it is of the

correct direction and magnitude.

B, Influence of detachment on crystallographic perfection

and compositional homogeneity

As with surface appearance, a wide variety of properties has been observed in ingots exhibiting

detachment. These properties are also summarized in the table constituting Attachment A. It is

interesting to note that there was seldom any correlation between the ridges and lines sometimes

observed on the surface and any internal defects or composition variation.

Axial and radial variations in impurity doping ranged from that expected for diffusion-controlled

solidification to that corresponding to vigorous convection. Sometimes there was a variation in

composition near the detached surface. Although impurity striations were rare, they were



occasionallyseennearthe surface. Somedetachedsurfaceswere inadvertentlycoatedwith oxide,
whereasevendissolvedoxygenwasnot detectedonothers. An interestingresultwasobtainedin
Wilcox's Skylabexperimentson GaSb-InSballoys[1]. Large changesin compositionoccurred
acrosstwin boundariesonly in thedetachedportionsof the ingots.

Generally speaking,crystallographicperfectionwas much greater when detachedsolidification
occurred. Very often, twins andgrain boundariesnucleatedonly where the ingot contactedthe
ampoulewall. Dislocationetch pit densitieswere frequentlyorders of magnitudelesswhenthe
solidificationhadbeendetached. In semiconductors,this higherperfectionhasled to substantial
increasesin chargecarriermobility.

C. Prior models for detachment

Over the past 22 years, several models have been proposed to explain detached solidification. We

briefly review these below.

Ampoule de-wetting: When detached solidification was discovered in several Skylab experiments,

it was generally thought that the melt had lost contact from the ampoule wall because of the high

contact angles of the semiconductor melts. Indeed, the phenomenon is still called "de-wetting" by

some investigators [e.g.,2-4]. This view persists, in spite of microgravity experiments [5,6] and

theory [7] showing that liquids do not pull away from the ampoule wall, no matter what the contact

angle. The implicit assumption underlying this model is that the solid took the same shape as the

liquid from which it froze. This would be like a person examining a Czochralsld-grown crystal and

concluding it came from a cylindrical melt of the same diameter as the crystal! In reality, the edge

of a growing crystal does not even begin to follow the melt's meniscus -- it deviates by the so-

called growth angle.

It is relevant to note that the voids found on the surface of Bridgman-grown crystals do not have

the same shape as the gas bubbles had on the wall in the melt before solidification. In a parabolic

flight experiment with InSb, we found that gas bubbles on the wall moved when the freezing

interface contacted them [8]. Such a bubble moved toward and partly onto the interface, so as to

minimize the surface energy in the system. If one looks carefully at such cavities on a grown

crystal, it can be seen that the contact angle to the ampoule changes as one moves around the

cavity. This is a manifestation of the interaction between the growing crystal and the bubble.

Shrinkage: Some instances of detached solidification of metals in microgravity have been

attributed to shrinkage during solidification. We believe this is erroneous. It is the inverse of the

old discredited claim that one cannot grow semiconductor crystals by the vertical Bridgman

technique because these materials expand when they freeze. To clarify the situation, let us consider

the volume change that occurs as a semiconductor slowly freezes upward on earth. Solidification

begins at the bottom of the ampoule, perhaps on a seed. If the density decreases upon freezing,

then the top of the melt moves slowly upward to accommodate the increasing volume. Provided

that enough head space remains for the entire volume change, solidification proceeds to completion

without a problem. On the other hand, if the upward movement of the melt is blocked, then the

ampoule breaks.



Thereversesituationoccursfor metalsthat contractwhenthey freeze. The melt surfaceslowly
movesdownwardduringsolidification,while themeltandthesolidboth remainin contactwith the
ampoulewail.

If the coefficient of thermalexpansionis greaterfor the ampoulethan for the ingot, thenduring
cooling from the meltingpoint, the ingot is put under tensilestresswhile the ampouleis under
compression[9-13]. Dependingon the mechanicalpropertiesand the degreeto which the solid
sticks to the ampoule,the ingot may break free From the ampoule wall and form a gap, it may

remain stuck and plastically deform, or it may remain stuck and break the ampoule.

Rough ampoule wall: Duffar has attributed detached solidification to a rough ampoule wall [2-4].

The idea is that a non-wetting melt cannot penetrate into cavities, especially if some residual gas is

present in them. The problem with this model is that the interior of quartz growth ampoules is

typically very smooth. Often it has been coated with shiny pyrolytic carbon.

Duffar did fred that artificially roughened ampoules yielded detached solidification between the

peaks, while the solid was attached at the peaks [14-20].

Oxide coating: Another proposed model invokes an oxide coating that acts as a container smaller

in diameter than the ampoule. While this may have been true in some flight experiments, it has been

rare. Ampoules were sealed in an inert gas and/or vacuum, sometimes with a gas getter installed.

In the case of GaSb, for example, electron channeling patterns on the detached surface were sharp

and showed no oxide [21,22]. No oxygen was detected by Rutherford back scattering

measurements.

D. Current model and results of theoretical development in this grant

Meniscus model: Our model of detached solidification is described in detail in Attachments D-G.

Attachment D consists of the first paper dealing with our new model for detached solidification. A

meniscus connects the edge of the ingot with the ampoule wall, similar to Czochraiski growth but

with much less distance between the ingot and the wall. Because of the curvature of the meniscus

and the surface tension of the melt, the pressure in the gap must be greater than that in the adjacent

melt. The gas filling this gap consists of one or more volatile constituents that are rejected by the

growing solid. In most cases, this is the residual gas remaining in the ampoule that has dissolved in

the melt. Although flight ampoules were generally sealed in a vacuum, outgassing would provide

adequate gas to fill the gap. With only one known exception [15,17,19,20], the residual gas

pressure has not been measured after flight experiments. In that one exception, it was about 10-2

Torr, in spite of the use of gas getters in the sealed cartridge.

One may draw an analogy between our mechanism of detached solidification and the formation of

"worm holes" or gas tubes inside growing solids. Formation of such tubes is commonly observed

in ice and organic compounds [e.g.,23-27]. The mechanism underlying tube formation is as

follows. Residual gas dissolves in the melt, e.g. air in the case of water being converted to ice

cubes. The dissolved gas is much less soluble in the solid, and so accumulates at the freezing

interface. When its concentration becomes large enough, a gas bubble nucleates [28] and grows. If



conditionsare right [29], it remainsat the interfaceandblocksthe solid from growing under it.
The diameter and stability of the resulting tube depends on the transport of dissolved gas into the

bubble [30]. One can regard detached solidification as the reverse geometry, i.e. the gas bubble

surrounds the growing solid rather than vice versa.

We have thought of the following three mechanisms by which detached solidification could be

initiated:

1. As described in Attachment D, the solid initially grows in contact with the ampoule wall.

Because of the difference in thermal expansion between the ingot and the ampoule, stress builds up

as the ingot cools from the melting point. Eventually this stress becomes large enough that the

ingot pops loose of the ampoule. The resulting gap between the ingot and the ampoule rapidly fills

with the volatile constituent that has been concentrating near the freezing interface, ff the rate of

transport of gas into the gap is sufficient, the gap widens and propagates along with the growing

crystal.

2. The freezing interface encounters a gas bubble at the wall. If the contact angles are proper

and the rate of transport of gas into the bubble is sufficient, this bubble propagates around the

periphery to form a meniscus.

3. Normally the feed rod is smaller in diameter than the ampoule. If the rod is not completely

melted, then a gap exists between the rod and the ampoule prior to the beginning of solidification.

The peripheral gas bubble may even grow during the soak period by dissolution of residual gas into

the melt at its hot end, diffusion down the melt, and discharge into the gap. The driving force for

this transport could be the Soret effect (thermal diffusion) or the dependence of gas solubility on

temperature. This phenomenon may have been responsible for the pronounced neck that resulted

from some flight experiments (see Attachment A).

The ridges observed in experiments with a small gap width may be visualized as equivalent to

several gas bubbles spaced around the periphery. The most probable cause is an instability in a

highly curved meniscus that entirely surrounds a growing crystal. This should be investigated

theoretically. Another possibility, which we consider less likely, is that the crystal remains stuck to

the wall at several locations when it first pops loose, and these propagate down the crystal.

Detachment on only one side of an ingot may be understood via 1 or 2 above. It could be that the

crystal pops free from the ampoule on only one side. This would be more likely for a crystal that

deforms easily near its melting point. Alternately, partial detachment could be caused by a

but2ble/meniscus that simply doesn't propagate around the periphery. Another possibility is that the

residual acceleration is transverse to the axis and deforms the meniscus sufficiently to make it

unstable on one side. Although theoretical analysis of this possibility is needed, we can say that

such deformation would only be significant for a relatively large gap width (for which the curvature

of the meniscus is small and the resulting pressure change is small).

Over the last two years, we have been developing our theoretical model for detached solidification.

Numerical calculations were performed for InSb, which has exhibited detached solidification in



numerousmicrogravityexperiments.AttachmentE is a manuscriptfor steadystatein the absence
of buoyancy-drivenconvection. For thecalculation,we first selecteda valuefor the gap width.
The flow field andconcentrationfield werecalculatedfor anassumedfreezingrate. A new gap
width wascalculatedfrom theseresults. New valueswere assumedfor the freezingrate andthe
calculationsrepeateduntil the calculatedgapwidth equaledthe value usedfor the calculations.
This gavethecorrect freezingratefor that gapwidth. This processwas repeatedfor a seriesof
gapwidths. We foundthatdetachedsolidificationin microgravityis favoredby alow freezingrate,
increasedconcentrationof volatileconstituent,largecontactanglefor the melton theampoulewall
(poorwetting), low surfacetensionfor themelt, anda largegrowth angle.

In our steady state model, we considered the influence of Marangoni convection arising from the

dependence of surface tension on temperature along the meniscus. The flow pattern caused by

Marangoni convection is a circulating cell with a size on the order of the gap width. Although this

convection had a large effect on the local concentration field, it did not strongly influence the total

flux of gas into the gap.

One would expect Marangoni convection to influence the axial and radial variation in impurity

doping in the crystal. As summarized in Attachment A, flight experiments with detachment yielded

a wide spectrum of results. In some cases, axial and radial concentration profiles corresponded to
diffusion-controlled conditions. In other cases, there seemed to be clear evidence for Marangoni

convection, ranging from gentle to vigorous. Why was Marangoni convection not alway__a exhibited

with detached solidification? If the gap is very narrow, our calculations show that the region of

perturbed composition should also be very narrow. Thus, one might still achieve an axial

concentration profile expected in the absence of convection, particularly if the freezing rate is not

low.

Another possible explanation for diffusion-controlled segregation with detached solidification

involves a surface-active impurity that concentrates on the meniscus surface. One would expect,

for example, that dissolved oxygen would concentrate on the surface of semiconductor and metal

melts. Such impurities strongly inhibit the movement of a free liquid surface. For example,

surfactant can stop Marangoni motion of a gas bubble in a temperature gradient and retard its rise

velocity in a gravitational field [e.g.,31]. The influence of a surfactant increases as the bubble size

decreases. Thus, for a given oxygen concentration in a semiconductor melt, we would expect

Marangoni convection to manifest itself only for large gap widths during detached solidification.

A third possibility, that we consider unlikely, is the formation of an oxide film on the surface of the

meniscus. Although such as solid film would indeed stop convection, we do not believe such a film

can be stable. In our mechanism of detached solidification, the meniscus must move along the

ampoule surface during growth. An oxide film would tend to stick to the ampoule surface and

either prevent motion of the meniscus or break in the process.

In Attachment F, we examine the stability of steady-state detached solidification in microgravity.

We fmd that the shape of the meniscus is destabilizing in a fashion similar to Czochralski growth.

If, for example, the crystal begins growing toward the wall, the meniscus shape tends to

acceleration the change in diameter. Thus, if only the meniscus is taken into account, one predicts



that both Czochralskigrowth and detachedsolidificationareunstable. Sincethis is contrary to
experimentalobservations,other factors must stabilize the growth. Here, we consideredgas
transport andheat transferasstabilizingmechanismsfor detachedsolidification. We found that
while gastransportinto the gapis necessaryfor detachedsolidification,it is sufficientto stabilize
detachmentonly for a short distance,on the order of the gap width. On the otherhand, heat
transferstronglystabilizesdetachedsolidification,asit doesin Czochralskigrowth.

In AttachmentG, weconsiderthe influenceof gravityon detachedsolidification. We showthat in
the usualvertical Bridgmanconfiguration,we must add the melt's hydrostaticheadto the gas
pressurein the gaprequiredto maintainthe meniscusshape. Increasedtransportof gasinto the
gap is requiredto maintainthis increasedpressure.Buoyancy-drivenconvectioncanprovide this
increasedtransport, provided that the convectionis gentle and is directed outward along the
freezinginterface. On earth,onewouldexpectsuchconvectionfor averyslightlyconvexinterface
shape.Thus,it is interestingto note thatdetachedsolidificationwasrecentlyobservedonearthfor
germaniumwith a slightlyconvexinterface[32-34]. Useof a mirror furnaceenabledobservationof
theampoulein the neighborhoodof thefreezinginterface.The appearancewasexactlyasexpect
from our model. Unfortunately,detachmentis verysensitiveto thedegreeof convection,making
its achievementoneartha lucky andrareevent.
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Attachment A. Directional solidification experiments performed in space

that appear to have shown detachment

Material

Ag

Ampoule or
crucible

TiO2]Ni skin,
square ampule

Ag-Cu
(79% Ag)

AI

AI
(+ 0.2-0.5wt%
SiC & A1203

particles)

Dimensions
of feed rod

49 mm long

A1203 crucible 5 mm dia.
750 tort Ar

6.5 mm dia.,

55 mm long

A!
(+ 4% Cu)

Ai - Cu
eutectic

A! - Cu
eutectic

Quartz,
-0.1 tort Ar

Thermal conditions

A! - Ni
eutectic

(6.1wt% Ni)

AI-Zn

alloys

(Bil.xSbx)zTe3

CdTe
(+ 4% Zn)

Graphite
crucible,
He

Quartz,
~0.1 torr Ar

Graphite

Graphite

graphite
crucible
2x10 "3ton"

SiC crucible

quartz

quartz

10 mm dia.,

80 mm long

11.5 mm dia,
100 nun long

6.25 mm

dia.,
12.7 mm

long
6.25 mm

dia.,
12.7 mm

long
7 mm dia.,

70 mm long

15 mm dia.

Freezing
rate
6 mm/hr

11 - 22.6

mm/hr
translation

11 - 22.6

mm/hr

grad freeze
gradient
freeze

gradient
freeze

20 or 200
cm/hr

grad freeze

10.8 mm/hr

1.6 mm/hr
translation

Grad 200-300 K/cm

No soak;
Cool 1800 K/hr

Soak 10- 120 min;
Cool 11.3 - 45 K/hr

Soak 40 min,
Cool 3600 K/hr

Soak 138-420 min,
Gradient 30-40 K/cm,
Cool I 1.3-45 K/hr.

Soak 1 hr.,

grad 45 K/c m,
cool 144 K/hr

Soak 1 hr.,

grad 45 K/cm,
cool 144 K/hr

Cool 18 or 90 K/hr

Gradient 70 K/cm

Heat 2 K/rain, soak 2
hr, cool 120 K/hr,
gradient 33 K/cm

Mission, hardware

Shuttle SL- 1
& TEXUS - 9

Salyut-6, Bealutsa
Kristali facility
1980

1 ES 315/1
1983

Salyut-6, Bealutsa
Splav
1980

Skylab 3
Westinghouse
furnace, 1974

SkyMb4
Westinghouse
fumace, 1974

Mir
Cristallizator CSK- 1
1987

Spacelab 1 ES 316

Salyut-6
Halong-2&3, 1980
USML- 1 Shuttle,

Crystal Growth
Furnace

Results: surface

Gap between alloy and
skin. Sometimes ingot
separated into two parts.
Contact angle 1500.
Detached from the metal

substrate. Large faceted
zones on free surfaces.

"Shrinkage" more in part

of crystal with smaller

diameter

Many "shrinkage" voids
and bubbles.

"Shrinkage" more in part
of ingot with smaller dia.

Reduced diameter of hour

glass shape in the
regrowth region.

Very slight diameter
reduction.

Detached

Detached ~3 - 5 mm

Pores, holes with smooth

surfaces, pores with steps.
~ 5 mm detachment on
one side at end of cone

region.

Results: interior

(EPD = etch pit density)

Distribution of SiC more

homogeneous, microhard
20% higher, better
adhesion of particles

12 % lower average
defect spacing, 20%
lower average fault

density.
12 % lower average
defect spacing, 20%

lower average fault

density.
NiAI3 rods axially
oriented from start,

spacing 9% larger at 20
mm/hr, 13% at
200mm/h

Microgravity samples
not dendritiC, l':g

samples are.

Authors

Sprenger
[42]

Barbieri

[43]

Fuchs

et al., [45]

Froyen
[41]

Fuchs

et al., [45]

Hasemeyer
_t al.

[39]

Hasemeyer
et al.

[39]

At detached region, no

grain or twin nucleation,
much lower stress and

fewer dislocations.

Regel
et at.

[20a, 20b]

Potard and

Morgand
[44]
Zusman et

al., [34]
Larson
et al.

[28]



Ampoule or
crucible

Material

Fe
(alloy)

A1203 skin

Triangular
cross section

prism of

pyrolytic BN
Carbon-coated

quartz, conical

GaAs

(undoped)

GaSb

polycrystalline

GaSb

(+ lat% Te)
<lll>Ga

GaSb

(undoped)
<1 ll>B(Sb)

at front end,

graphite

spacer at tail
end.
-10 .6 tort

Dimensions

of feed rod

49 mm long

Freezing
rate

6 mm/hr

Thermal conditions

Quartz,
5x10 "3tort

Sand blasted

quartz, carbon

cloth at ends,
10 .6 torr

Non-cylindr
cross section

less than 3

mm dia.

8 mm dia.,

39 mm long

translation

11.3 mm/hr

translation

Grad 200-300 K/cm

Soak 90 rain,

translate 5.5 hr

Mission, hardware

SL-1 Shuttle ES-

Results: surface

GaSb

(Te-doped)

<11 I>B(Sb)

GaSb

(undoped &
+ 1at% InSb)

Quartz, carbon
cloth at ends,
10 -6 torr

Quartz with
machined

spiral groove

7 nun dia.

Feed rod 6

mm dia, 30

mm long. I0

mm ID amp.
Feed rod 6

mm dia, 30

mm long. 10

mm ID amp.

10 mm dia.,

70 mm long

- 10 mm/hr

gradient
freeze

10 - 20

mm/hr

gradient
freeze

10 - 20

mm/hr

gradient
freeze

Translated

out of

furnace

Gradient 25 K/cm

Feed rod entirely

melted prior to

cooling to grow.

8 hr growth
All but 4 mm of feed

rod melted before

cooling to grow.

8 hr growth.

Seeds accidentally

entirely melted.

325,
TEXUS - 9

Salyut-6, E6tv6s-7

Kristall facility
- 1980

Mir-Soyuz TM-3,

Crystallizater CSK-
1 furnace

1987

China Returnable

Satellite- 14

1992

China Returnable

Satellite- 14

1992

EURECA,

Automatic Mirror

Furnace

1992

Gap between alloy and
skin. Sometimes

separation into two parts.
Detached from the

corners of triangular

prism, in contact on
faces.

Detached except for ring

near hemisphere front

end. Ridges just after

ring, some normal to

growth, some zig-zag,
some attached. Detached

parts rough with some
microfacets.

Asymmetric neck after

seed, 7 mm long with

max gap 1.1 mm & ridges

mainly axial, intricate
structure, not attached.

Surface rough.

Photo shows detached for

at least 1/2 of length, with

sharp variations in gap
width.

Dia < seed for 12.5 cm,

-3 nun gap and wavy,
then attached. Photo

appears to show irregular

axial ridges and faint
lines normal to axis.

Shiny & metallic implies
no oxide.

No contact in beginning,

then slight contact at

sharp ridges at top of
screw thread machined in

crucible, attached at end.

Results: interior

(EPD = etch pit density)

EPD 10X less, grain
boundaries 15X fewer,

mobility 40% higher
than from earth. On

surface, no oxide

(electron channeling),
<10160/cm 2 (Ruth. b.s.).

More uniform resistivity,

higher perfection, no
striations. Lamellar

twins at shoulder. On

earth, twins grew from
interface where

contacted wall.

Polycrystalline, Ground-
based control stuck to

ampoule wall.

Single. No striations,
diffusion-controlled axial

conc. Twinning begins
near attachment. EPD

decreases to 0 in

detached, increases

steeply after attached.

Began poly, ended

single. Quality increased
where detached,

degraged where attached.
Diffusion-controlled

segregation.

Au_o_

Sprenger

[421

Gatos

et al.

[48]

Lendvay,

Regel
et al.

[19, 19a]

Regel
et al.

[20, 20a,

20b]

Ge,

Nishinaga

et al. [21,

21a, 21b]

Ge,

Nishinaga
et al.

[21, 21a,

21b]

Duffar

et al. [E,

22, 22a,

22b, 22c]



Material

GaSb

(5 x 10 TM Te
atom/cm 3 or

9at% In)

Gal._InxSb

(x =

0.1,0.3,0.5)

Ge

(8x 1016 Ga/cm 3,

4x10 TMSb, or

2x1015 B)

<111>

Ampoule or
crucible

Quartz cruc.,
machined

Dimensions

of feed rod

Te-doped
120 mm

Freezing
rate

Te 4.0-4.5

mm/hr,

In 2.2-3.4

mm/hr,

grad freeze

Thermal conditions

Te-doped gradient

18-28 K/cm,

In-doped gradient
25-40 K/cm

Mission, hardware

Shuttle D2-WL

Gradient Heating

Facility - 03
1993

lmm grooves,

+ gas getter.
~ 10"2ton" after

expt.
Carbon-coated

quartz, 3

graph spacers

sep'd by

quartz wool at
each end, 10
tort He.

Graphite,
10-4 torr

long,

In-doped 70

mm long.

8 mm dia.,

90 mm long

- 8 mm/hr

increasing

down ingot,

gradient
freeze

18 mm/hr

gradient
freeze

Soak 16 hr at 960 C

melting back ~ 1/2,

initial gradient - 80

K/cm, cool 36 K/hr
for 8.3 hr.

Soak in gradient ~ 2
hr,
cool 36 K/hr.

Skylab 3

Westinghouse
furnace

1974

Sky_b 3,

Westinghouse
fumace

1974

Results: surface

Detached except at 0.15

mm flats on top of screw
thread machined into

crucible surface and

where In-doped was
dendritic.

Wavy surface with
smaller diameter. Much

smaller diameter in 2

areas for x = 0.1.

(Attad_ed in Skylab 4

experiments, performed
under similar conditions.)

Smooth, necked in. Most

pronounced for Ga-doped,

~ 1 cm long.

Results: interior

(EPD = etch pit density)
Grain and twin

nucleation where

attached and at silica

dust accumulations on

surface. Segregation

indicates strong mixing.

Mostly twin boundaries.
54% less boundaries

than from earth. Twins

seldom nucleate in

space. Only where

detached, large radial
variation in comp'n. &

-2X changes across twin
boundaries.

Resistivity fluctuations

~5X less from space.

Less axial segregation.

Higher resist, near surf.

Ge

(+ 1019 Ga

atom/cm 3)

<II1>

Ge

(+ 0.7 - 1 at%
Si + 1 - 2x1017

Sb/cm 3) <I 11>

Ge

(+ 2 x 1017 Ga,
1.5xl01SSb/cm3

)
Ge

(+ 10 TM / cm 3)

Ge

(+ 1017 Ga/cm 3)

Quartz,

graphite end

cups for CID,

quartz wool

packing, 40
torr At.

Carbon-coated

quartz,
10 -4 tort

Carbon-coated

quartz, cylindr
& ribbon

Carbon-coated

quartz

Carbon-coated

quartz

8.43 mm

dia., 95mm

long

38 nun long

12 mm dia.,

38-52 mm

long

9 mm dia.,
39 - 47 mm

long

9.1 nun dia.,

60 mm long

0 initially,

approach
~36mm/hr.

CID show

no fluct'ns.

gradient
freeze

11.3 - 22.5

mm/hr

translation

11.3 mm/hr

translation

11.3 mm/hr

translation

Heat 3.5 hr,

soak 2 hr,

gradient 50 K/cm,
cool 144 K/hr.

Gradient 30-40 K/cm

Soak 2 hr,

gradient 70-80 K/cm

Apollo-Soyuz T.P.

Westinghouse

gradient freeze
furnace

1975

ApoHo-Soyuz T.P.

Westinghouse
fumace

1975

Salyut-6,

Kristall facility
~ 1978- 1982

Salyut-6,

Kristall facility
~ 1978- 1982

Salyut-6,

Kristall facility

Random network of

ridges 1-5 lam high,

reducing contact to < 1%
of surface.

Gap 40 - 60 lain wide,

wavy, scattered peaks and

ridges in contact with
wall.

Detached over ~ 1/4 of

surface of ingot.

Irregular lateral mounds

and longitudinal ridges in

contact with ampoule.

Axial & radial variation

in doping, l_uctuations
on and near small (111)

facet along one side.

Many fewer grains &
twins.

No irregularities, cracks

or bubbles; large radial

variation in Si conc.,

with opposite variation
in Sb.

EPD 102 103 cm "2,

striations; melt 130-150 °

contact angle.

Variation of resistivity

3-4 times larger in

samples grown on earth.

EPD 2x103 cm "2

compared to 2x105 cm 2
from earth. Axial

sesre_ation reduced.

Authors

Duffar

et al.

[E, 22,
22b, 23,

23a]

Wilcox

et al.

[E, 25,

25a, 25b,

25c, 25d,

25e]

Yue and
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llc, E]
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Markov
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Material

Ge
(+ 1020 In/cm 3)

<111>

Ge

(+ P or Zn)

Ge

(p-type, Zn +
Sb; p-type, P +

Zn) <111>

Ge

(5x10 is

Ga/cm 3)
<100>

Hgo.7sCdo.22Te

HgCdTe

(- 20% Cd)

Hg0.s4Znoa6Te

InAs
<111>

InSb
(10 TM - 5 X 1017
Te/cm 3)

Ampoule or
crucible

Carbon-coated

quartz,

graphite end

sup_ports.
10"" tort

Graphite-lined

quartz or

graphite
crucbi,
10 .5 torr

quartz,
10 .4 torr

Part free, part
coated with

quartz or

Pyrex,
760 tort Ar

quartz

Dimensions

of feed rod

72 mm long,
14mm

melted

8 mm dia.

4 cm, - 2 cm

melted

6 mm dia.,

~ 20 mm

melted

Freezing
rate

11.3 mm/hr

translation

-420

mm/hr

gradient
freeze

-360

mm/hr

gradient
freeze

gradient
freeze

2-50 mm/hr

gradient
freeze

Thermal conditions

Soak 1 hr at 1100°C

100 s to heat,

80 s to melt,
400 s to fre,eze

100 s to heat

Gradients:

125 K/cm with

quartz,

95 K/cm with Pyrex

Soak 2 hr (Syrena 1)
&

4 hr 45 min (Syrena
2) at 500 - 900°C,

gradient 30-40 K/cm.

Mission, hardware

Salyut-6, Caribe

Kristall module
- 1978- 1982

MIR sound rocket,

10 min,

BKT exothermic

furnace,
1976- 1980

Exothermic furnace,

-1983

MASER 2 rocket,

7 min, mirror
furnace, 1990

Salyut-6, Syrena
l&2

Splav-01 furnace
1978

Results: surface

Large caverns, many
small bubbles, collar with

decreased diameter and

small crests perpendicular

to growth in contact.

Contacted walls only in

separate small areas.

Wavy with over 99%
detached.

Regular ridges in growth

direction with quartz,

good contact with Pyrex.

Cracks in uncoated parts,
attributed to Ge oxide.

Detached.

Results: interior

(EPD = etch pit density)
Gas bubble on axis near

frontier of growth. EPD
104 cm "2. Lower

resistivity & higher

perfection.
Gas inclusions. Single

crystals compared to

polycrst from earth. EPD
102-103 lower. Uniform

doping.
EPD reduced to 102 cm "2

from 105- 106 cm -2 in

seed. Single from space,

poly from earth.

Reduced axial

segregation in material

grown detached.

Authors

Calzadulla

et al.

[4, 10,
10a]

Vlasenko

et al.

[4, 50]

Chernov

et al.

[5]

Tiiberg &

Carlberg

[7]

8 mm dia.,
15 - 30 mm

long

5.7 mm long

regrown

gradient
freeze

0.15mm/hr

translation

Soak,

cool 11 K/hr (#1)

and 2.8 K/hr (#2)

Heat up for 5hr,
translate 5hr, soak

Salyut-6

Splav-01 furnace

Shuttle USML- 1

1992

Limited contacts with

ampoule wall.

Mostly detached. Smooth
with crinkles and some

Quality and grain size

increase strongly as

growth rate decreases.
Skin enriched in CdTe.

EPD 104 cm "2 compared

to earth's 106 cm "2, skin

enriched in Cd.

Galazka,

et al.

' [4, 26,

26a]

Carbon-coated

quartz

Carbon-coated

quartz

9 mm dia.,
40 - 50 mm

long

11.3 mm/hr

translation

10hr, grow 39hr
Soak 2 hr Salyut-6

Kristall facility

hills.

Detached for 1/3 to 1/2 of

specimen length.

9 mm dia.,
40 - 50 mm

long

11.3 mm/hr

translation

Soak 2 hr Salyut-6

Kristall facility

Detached 113 to 1/2 of

specimen length

EPD in detached regions

-2.5x10 cm "2 compared
to earth's >_5x104 cm "2.

Striations.

[29]

Khryapov,
et ai.

[4, 17, 17a,

17,hi

Khryapov
et al.

[4, 17, 17a,

17b]

Asymmetric slightly
concave interface.

Kurbatov

et al.

[4, 27]

Lehoczky,
et al.



Material

InSb

(+ 1018 Te/cm 3)

<I 1I>B in

growth
direction

InSb

(+ 10 Is Te/cm 3)

<lll>B in

growth
direction

InSb

(< 1016 Zn/cm 3

or - 1019 Te

cm "3) <11 I>B

InSb

(undoped)
<211>

InSb

(7x1017Te/cm 3)

<211>

InSb

(undoped &
9x 1019 Sn]cm 3)

InSb

InSb

InSb

<III>B

Ampoule or
crucible

Quartz,
graphite

spacers at end.
10 -7 tOII He

Quartz,

graphite

spacers at end.
10 -7 tort He

Carbon-coated

quartz
10- 5 tort

Carbon-coated

quartz
10- 7 torr

Carbon-coated

quartz
10 -7 tort

Unsealed

quartz,
machined

inside,

graphite caps.

Quartz and
BN crucibles,

C & BN end

caps.

Quartz & C

end caps; one

smooth, one

with grooves.

Quartz with

large free

space
10 -3 - 10 -4 |OlT

Dimensions

of feed rod

14.5 mm dia,

ll0mm

long, regrew
60 nun

14.5 mm dia,
ll0mm

long, regrew
60 mm

11 - 13ram

diameter,
20 - 30 mm

long

8 mm dia,

60 mm long

8 nun dia,

60 mm long

10 & 14 mm

dia, 100 mm

long

12 mm dia.,

15 mm long.

12 nun dia.,

15 mm long.

13 nun dia.,

100 mm long

Freezing
rate

~ 12 mm/hr

gradient
freeze

~ 10 mm/hr

before

power off,
then

~ 17 mndhr

3 - 9 mm/hr

gradient
freeze

11.3 mm/hr

translation

11.3 mm/hr

translation

0 to -22

mrn/hr from

calorimetric

technicque

gradient
freeze

Thermal conditions

Heat up 120 min,
soak 60 rain,

cool 70.2 K/hr for

- 4 hr, power off.

Soak 60 min, cool

70.2 K/hr for 140

min, soak i50 min,

power off.

Soak 2.3 hr,

gradient 10K/cm,
cool 11.3 K/hr.

Soak 2 hr, cool 4.3 hr,

soak 2 hr

Melted and cooled in

5 min.

Melted and cooled in

5 min.

Gradient 10- 15

K]cm,

cool 11.3 K/hr

Mission, hardware

Sky_b 3

Westinghouse
furnace

1973

Skylab4

Westinghouse

gradient freeze
furnace

1974

Salyut-6

Splav-01 furnace

Salyu_6
Ktismlifacility
- 1978

Salyu_6
Krismiifacility
- 1978

Shuttle D 1

Gradient Heating

Facility - 03
1987

TEXUS 31

TEM01-1

TEXUS 32

TEM01-4

Kosmos- 1744

Splay-02,1986

Results: surface

Irregularly spaced ridges

m growth direction, 25

am avg height. Irreg.

spaced lines normal to

growth dir. attributed to
vibrations.

Reduced dia for 30 mm,

then irregularly spaced

ridges ~ 25 pan high.

Similar appearance to

Czochralski crystals.

Necked in for ~ 20 mm to

~ 1.5 mm maximum gap.

Contact only on oblong

mounds (hillocks), mat
surface elsewhere.

Spiral region free from

contact, with hillocks &

periodic bands,
decreasing from 1/2 of

perimeter to 1/5. Bubbles
where attached.

Attached except where

crucible had machining

defects; wide bubble

coveting 22% at start of

growth of Sn-doped.

Kept shape of feed rods
due to oxide coating,

-llam thick & mostly Sb
oxide.

Both detached. Smooth

ampoule gave irregular &

larger facets. Machined

gave cylindrical with

rings.
Necked in ~ 10 mm,

highly asymmetric, ~ 3
mm on one side, < 1 mm

other.

Results: interior

(EPD = etch pit density)

Concave. Diffusion-

controlled doping with

no fluct'ns except on &
near facet on one side,

twins normal to growth

direction.

Concave interface,

diffusion-controlled

doping with no fluct'ns,
EPD 40% less than from

earth.

Few inclusions, no

striations, EPD reduced
to 10 - 102 cm -2

EPD 250 cm "2, particles

mark seeding boundary,

many twins.

Fewer grain boundaries,

generally twins. No

51am inclusions near
seed as from earth. EPD

103-2x105/cm 2. Resist

& mobility constant.

Intensive segregation of

Sn near bubble,

attributed to Marangoni
convection.

,,r

No dopant striations and

enhanced perfection.

Authors

Witt, Gatos
et al.

[E, 11,

lla, llb,

11c]

Witt, Gatos

et al.

[E, 11,

lla, llc]

Zemskov
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Khashimov
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[181

Khashimov
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I
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et al.
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Duffar

et al.
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Duff at

et al.
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Zemskov

[14]



Material Ampouleor
crucible
Quartz with

large free

space
10 -3 - 10 -4 torr

Dimensions

of feed rod
Freezing
rate

Thermal conditions

Quartz

- lff 5 tort

13 mm dia.,

100 mm long

gradient
freeze

Gradient 10-15 K/cm,

cool 11.3 K/hr

Mission, hardware Results: surface Results: interior

(EPD = etch pit density)

No dopant striations and

enhanced perfectionInSb
<III>B

InSb

(- 1016 Zn/cm 3)

<111>

NaF-NaC!

(eutectic)

PbBr2

(+ 2% PbCI2)

PbClz - AgC!

PbTe

(+ 0.41% In)

Graphite-lined

teel tube

Quartz

105 tort

Quartz

Quartz
10 .5 torr

PbSeo.sTeo.5 Quartz

Pbo.sSno.2Te

Si

(+ Sb or B)

Zn

(+ Zn 65)

Quartz

Ar

Graphite-lined

quartz, graph
or Mo cruc,
105 torr

Graphite, Ar
5x10 "6tOil"

9.5 mm dia.

8 mm dia.,

50 mm long

8 mm dia.,

~ 30 mm

long

16 mm dia.,
- 40 mm

long

8 mm dia.

46.8 mm

long

gradient
freeze

gradient
freeze

11.2 mm/hr

translation

11.3 mm/hr

translation

2-50 mm/hr

gradient
freeze

< 3.5

mm/hr

gradient
freeze

gradient
freeze

Heat 90 rain,

then power off.

Cool 36 K/hr,

gradient 50 K/cm

Gradient 15 K/cm

Heat up 90 min,

soak 4 hr,
Gradient 90 K/cm

Soak 2 hr (Syrena 1),

4 hr 45 min (Syrena

2)

Gradient 20 K/cm

100 s to heat,

80 s to melt,
400 s to freeze

Soak 1 In" at 775°C,

gradient 45 K/cm

Foton

Splay-02, 1989

Recoverable Satellite

Multi-purpose

Crystal Processing
Furnace, 1987

Skylab,

Westinghouse
furnace, 1974

Sounding rocket
TR-IA 3

1993

S.alyut - 6 "Morava"

Kristall facility

Salyut-6

Kristall facility

Salyut-6, 1978

(Syrena 1, Syrena 2)

Splav-01 furnace
1978

Shuttle STS 61A

3-zone furnace

1985

MIR sound rocket,

10 min, BKT

exothermic fumace,
1980

Skylab 3

Westinghouse
furnace, 1974

Detached ~ 1/2 of length

on one side, much less on

other side.

Smooth. Separated from

container, while earth

sample adhered tightly to

quartz ampoule.

Traces of microscopic
free surface. Contact

angle with quartz 30-40 °
Partial detachment.

Shape of the sample
differs from that of the

ampoule

Many pores at - 21 mm,

especially on one side,
with surfaces of same

morphology as detached

parts.
Detached

Few small grains
contacted the wall, the

rest of the surface was

detached and very near
the wall.

Contacted walls only in

separate small areas.
Surface enriched in Sh.

Wrinkled

No dopant striations,
3.6% radial variation in

resistivity compared to
34% from earth.

The distribution of In in

space sample is more

homogeneous.

Quality strongiy

dependent on growth

rate, at slow growth rates

grains -5mm.

Single crystals grew at

7 - 10 mnffmin '
compared to polycrst on
earth. EPD 102-103

lower.

Nonuniform distribution

of isotope

Au_o_

Zemskov

1141

Zhang
et al.

[16, 16a]

Yue and

Yu

[37]
Kinoshita

et al.

[35, 35a]
Barta

et al.

(36]

Abramov

et aL

i[32]

Galazka

et al.

[26a1

Crouch,

Fripp
et al.

[31]

[4]

L_wa

[381



Material

Zn - Pb
monotectic

(15 vol% Pb)

Ampoule or
crucible

Graphite
crucible

Dimensions

of feed rod
Freezing
rate

Thermal conditions

Soak 15 min at

850°C,
cool 1800 K/hr

Mission, hardware

Shuttle DI

IHF01

Results: surface

Gap on cold side with Zn

spheres flattened against

ampoule wall.

Results: interior

(EPD = etch pit density)

Authors

Ahlborn,

Lohberg

[40]



Attachment B. Some directional solidification experiments performed in space that

did not appear to have shown detachment.

Material

AI-Cu eutectic
(+ 33 wt.% Cu)

Bi

(+ 1% Sb)

Fe-C-Si

(3 - 4% C)

GaP
<111>

Gal.,_xSb
(x=

0.1,0.3,0.5)

Ge

(5x10 Is
Ga/cm 3)

<100>

Ge

InSb (nndoped
& ~102°Sn]cm3)

<lll>B in

growth
direction

Ampoule or
crucible

Ar

Dimensions

of feed rod
Freezing
rate

5 mm dia.,

150 mm long

gradient
freeze

Thermal conditions
} .

Mission, hardware Results: surface

carbon-coated

quartz

A1203 skin,

~ 801xm thick,

cylindrical
with neck

quartz

Carbon-coated

quartz, 3

graph spacers

sep'd by

quartz wool at
each end, 10
torr He.

Part free, part

Pyrex-coated,
760 torr Ar

Quartz.
Carbon sheets

at ends of

crystal.

Quartz,

graphite

spacers at end.
10"7tort He

7 nun dia,

150 nun long

9 mm dia.

8 mm dia.,

90 mm long

6 mm dia.,
- 20 mm

melted

7 mm dia.,
100 mm

long, 7 mm

grown

14.5 mm dia,
ll0mm

long, regrew
60 nun

6-18

mm/hr

~ 8 mm/hr,

increasing

down ingot,

gradient
freeze

gradient
freeze

360 mm/hr

measured

by CCD

camera

~ 12 mmPar

gradient
freeze

No soak

Cool 3 K/hr for 24 hr,

gradients 5 K/cm and
11 K/cm

Heat to 1350°C,

soak 5 min,

gradient 200-300
K/cm

Soak 1000- 1060°C

for 15 hr, gradient
20 - 40 K/cm

Soaked 16 hr at

1020°C to melt back

~1/2, initial gradient

80 K/cm, cooled
36K/hr

Gradient 95 K/cm

Heat up 120 min,
soak 60 min,
cool 70.2 K/hr for

~ 4 hr, power off.

Spacelab 1 STS-9
1983

Salyut-6, Berolina.

Splav 01 furnace,
1978

Shuttle D- 1

IHF-07

1985

Salyut-6,

Kristall facility,

zone melting

Skylab 4

Westinghouse
furnace

1974

MASER 2 rocket,

7 min, mirror

furnace, 1990

TR-IA rocket, 6 min

Transparent gold-
coated furnace with

Ta heating coil, 1992

Skylab3

Westinghouse
fumace

1973

Spherical bubbles (0.5 to

2 mm) on the last third of

the low-gravity samples.

Bubbles, with smooth
surface between in

contact with wall

The cast iron sample was

processed within the

A1203 skin without any
detachment.

Bubbles on surface (melt

length 3-5 mm)

Shiny surface in contact

with ampoule. Not
detached.

Good contact with Pyrex,

cracks in uncoated part,
attributed to Ge oxide.

Strong sticking of crystal

to ampoule and carbon
sheets at ends. Crack in

ampoule at end of

growth.

Smooth and shiny.

Randomly distributed

cavities, i.e. gas bubbles.

Results: interior

(EPD = etch pit density)

No change in lamellar

spacing or regularity.

Sample diameter

increase,

no free pores or cavities

EPD I04-I0s cm 2,

electrophysical

properties similar

Mostly twin boundaries.
37% fewer boundaries

than from earth. Planar

initial interface.

Radially uniform

composition. AXial
seg'n diff. control.

Convex interface.
EPD ~ 106/cm2. '

Slightly lower from
earth.

Authors

Favier and

De Goer

[47,47a,47]
Schneider

et al. [49]

Sprenger

[46]

Regel et al.

[24, 24a]

Yee,Wilco

x, el al.

[E, 25,
25a, 25b,
25c, 25d,

25e]

Tilberg &

Carlberg

[7]

Nishinaga
et a_

[9, 9a]

Witt, Gatos

et al.

[E,11,

lla]



Material

InSb (undoped
& ~102°Sn/cm3)

<lll>B in

growth
direction

PbTe

(+ I0IsAg)

Pbo.sSno.2Te<

111>

Ampoule or
crucible

Quartz,

graphite

spacers at end.
10 -7torr He

Quartz
Ar

BN crucible in

quartz + BN

piston, spring
<10 5 ton"

Dimensions

of feed rod

14.5 mm dia,

ll0mm

long, regrew
60 mm

17 mm dia.,

50 mm long

15 mm dia.,

58 nun long,
32 mm

grown in

space

Freezing
rate

~ 10 nun/hr

before

power off,
then -17

10 mm/hr

gradient
freeze

5.5 mm/hr

translation

Thermal conditions

Soak 60 min, cool
70.2 K/hr for 140

min, soak 60 min,

power off.

Gradient 30 K/cm,

cool

Heat up 1 hr,
soak 1 hr,

gradient >40 Irdcm

Mission, hardware

Skylab 4

Westinghouse

gradient freeze

furnace, 1974

Shuttle Spacelab- 1

CNES gradient
freeze

SL-J/FMPT Shuttle

1992

Results: surface

Many bubbles up to 4 nun
in dia. on the surface. No

evidence of detachment.

Large voids inside one

portion. Interface shifted
from concave to convex.

No detachment.

Results: interior

(EPD = etch pit density)

EPD 5x105 cm "2(space)

vs 3x106 cm "2(earth).

Homogeneous in void-

free section. Mobility &

resistivity -2X higher

from space.

Authors

Witt, Gatos

et al.

[E, 11,

11a]

Rodot and

Tottereau
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Kinoshita

[33]
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R. L. Kroes et al.: Nucleation of Crystals from Solution in Microgravity

dimension. These were difficult to measure because they
had clumped together after the flight and could not be
separated without breakage. Since the purpose of this initial
flight experiment was the evaluation of the technique, no
provision was made for in-flight retrieval of the grown
crystals from the growth cells., Crystal retrieval will be
required on subsequent flights to provide crystals suitable
for post-flight analysis. A total of 4.34 g of crystals were
recovered from the cell after it was returned to the labora-

tory. The third planned run could not be performed be-
cause of time constraints.

5 Conclusion

This experiment successfully demonstrated the value of our
new method of initiating nucleation in a solution in micro-
gravity in providing significantly better control over nucle-
ation and growth processes than conventional techniques.
A predetermined volume of nucleating solution was de-
ployed in the desired location in a growth solution-filled
cell. Nucleation was restricted to this well-defined region
near the center of the cell. and crvstallites were grown. The
nucleation onset time was much shorter than expected

-- °

based on the results of ground control experiments using
the same concentrations. In these experiments a series of
solutions of various concentrations were prepared and
loaded into test tubes which were then sealed and allowed

to coot to room temperature. These tubes were inspected
periodically, and the time of the appearance of visible
nucleation was noted. Nucleation onset times were typically
hours to days. The reason for the difference between
ground-based and flight onset times has not yet been deter-
mined, but turbulence in the nucleating solution during
injection, and the high cooling rate may have been impor-
tant factors. Further experiments will emphasize the opti-
mization of the solution concentrations to improve control
of the nucleation rate. With finer control over nucleation,
this method will permit more precise control over growth
parameters which control crystal characteristics.
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W. R. Wilcox and L. L. Regel

Detached Solidification

Manv directional solidification flight experiments have pro-
duced ingots with smaller diameters than their containing
ampoules, a wavy surface, and sometimes thin ridges that were
in contact with their ampoule walls. Two hypotheses have been
advanced in the literature to explain this unexpected phe-
nomenon, but these hypotheses do not correspond to aH of the
experimental conditions and observations. We present here a
new model for detached solidification that explains the results
of all flight experiments. The first step is a sudden detachment
of the crystal from the wall because of the stress from
differential thermal contraction. This detachment propagates
down to the growth interface, causing a meniscus to form that
bends inward from the edge of the detached interface. The
subsequent growth tracks this meniscus, causing the growth
interface to move farther and farther away from the ampoule
wall. This contraction of the ingot diameter continues until the
meniscus contacts the edge of the interface at the angle
required for constant diameter growth. The requirements for
this model to operate are weak sticking of the solM to the
ampoule, poor wetting of the ampoule by the melt, rejection of
a volatile impuri O, (such as dissolved gas) by the freezing
interface, and liberation of this volatile impuriO" through the
meniscus into the gap between the crystal and the ampoule. We
also discuss the advantages of detached solidification in im-
proving crystallographic perfection.

1 Introduction

The first directional solidification experiments in space
were conducted over 20 years ago in America's first space
station, Skylab. Although some results were expected.
others were a surprise and have yet to be satisfactorily
explained. We consider here one set of observations from
flight experiments, namely those having to do with reduced
contact of the ingots with their containing ampoules.

Consider vertical Bridgman growth on earth. The melt is
contained in an ampoule, which is placed in a furnace with
a higher temperature on top than below. Solidification is
caused to proceed slowly upward by translation of the

ampoule downward, translation of the furnace upward, or
programming down of the furnace temperature. Except for
the effects of differential thermal contraction, the resulting
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ingot has the same diameter as the containing ampoule.
Furthermore the ingot surface incorporates the surface mor-
phology of the ampoule.

Directional solidification in space has often yielded very
different results from those realized on earth. In particular,
ingots from flight experiments often had a smaller diameter
than the containing ampoule. (This phenomenon has been
avoided in some flight experiments by arranging for a
spring-loaded piston to press against one end of the column
of melt and force it against the ampoule wall.)

Skylab contained a gradient freeze furnace constructed by
Westinghouse. In each run, three samples were heated at one
end and cooled passively at the other. Programming down
the heater caused solidification, with the temperature gradi-
ent in the material decreasing with time and the freezing rate
increasing with time. In one set of experiment s, Wilcox et al.
[I-7] obtained three InSb-GaSb alloy ingots smaller in
diameter than their carbon-coated quartz ampoules. The
ingots" surfaces were wavy. A second set of experiments gave
only smooth surfaces in contact with the ampoule walls. This
second set was run with a higher initial heater temperature.
The residual acceleration levels were unknown.

Witt et al. [8, 9] directionally solidified Te-doped lnSb in
the Skylab furnace built by Westinghouse. A single crystal
rod was melted partially back and refrozen. Over a distance
of about two diameters, the resolidified ingot necked in from
the seed crystal. The diameter then expanded to nearly fill
the ampoule. There were irregular ridges on the surface of
the crystal, like miniature walls of China. These ridges were
about one-thousandth of an inch high and contacted the
ampoule wall. The width of the ridges increased down the
crystal. In the last centimeter, the ridges became irregular
and branched out.

Similar results to those described above were obtained by
others in Skylab, the Apollo-Soyuz Test Project, in various
Soviet spacecraft, and in the Space Shuttle [10-47]. In some
of these experiments the detached portions of the ingots
also had ridges that were in contact with the ampoule
walls. There was no apparent relation of these ridges to
grain boundaries, other defects in the crystals, or crystallo-
graphic orientation. It is also interesting to note that all
but one of these flight results were obtained on semiconduc-
tors.- The exception is a set of experiments on aluminum
containing some copper in an asbestos-coated quartz
ampoule [46].

The explanation generally put forth for reduced contact
was that the melt did not wet the ampoule wall and so
pulled away from the wall. It appears to have been assumed
that the ingot took the same shape as the melt, so that the
melt was imagined to have been floating with little or no
contact with the ampoule wall.
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Unfortunately all of the above experiments were per-
formed in typical tube furnaces, in which one cannot see
inside the ampoule being processed. Thus the actual behav-
ior of the melt and its interaction with the freezing interface
were unknown.

Sen and Wilcox made the first observation of the behav-

ior of non-wetting liquids inside a cylindrical ampoule at
low gravity [48, 49]. Experiments were performed in the
KC-135 aircraft during parabolic flight maneuvers giving
about 20 s of low gravity. The liquid never lost contact with
the ampoule walls. Sometimes large gas bubbles formed at
the surface of the ampoule walls, and sometimes the liquid
separated into two or more columns. Similar observations
were made by Naumann in an USML-I glove box experi-
ment [50]. Sen and Wilcox theoretically derived the limit of
stability of gas bubbles before the liquid breaks into sepa-
rate columns [51].

Derebail, Wilcox, and Regel [52. 53] solidified InSb in a
transparent furnace in the KC- 135. They neither observed the
melt pulling away from the ampoule wall nor an ingot with
reduced contact. Two interesting features were observed:
(1) The solid detached from the ampoule wall some dis-

tance behind the freezing interface, due to thermal
contraction. This detachment propagated to the freez-

ing interface, but not beyond.
(2) Gas bubbles on the wall moved slightly toward the

freezing interface when it contacted them. This was
attributed to the bubble moving partly over onto the
freezing interface.

Lagowski, Gatos, and Dabkowski [54] advocated solidifi-
cation of non-wetting melts in ampoules with triangular
cross sections in space. They predicted that this would yield
cylindrical crystals contacting the ampoules only along thin
lines in the middle of each triangular face. Bostrup and
Rosen [55] did obtain approximately cylindrical ingots of
CdTe by solidification in triangular cross-section ampoules
in the KC-135. However a non-wetting liquid did not form

a liquid column in triangular ampoules in the KC-135 [48.
49]. The liquid pulled away from the ampoule only in the
corners. In agreement with theory. [51], the liquid continued
to contact each triangular face over about half of its width.
Duffar [56] reported that he was shown GaAs crystals with
this cross section that had been solidified by Markov using

triangular boron nitride ampoules in the furnace CRATER
on board MIR.

Another possible explanation for detached solidification
is that the solid feed rods were covered with oxide. This

oxide skin could be strong enough to contain the melt in
space and prevent it from contacting the ampoule. Con-
trary evidence is the radial variation in composition of
InSb-GaSb alloy that corresponded, qualitatively at least,
to that predicted for thermocapillary convection [6]. (Ther-
mocapillary convection would not occur in the presence of
a strong oxide skin.) Similarly the large contraction in
diameter observed in lnSb [8, 9] was much more than
would be expected in the presence of an oxide layer.

Avduyevsky et ai. [57, 58] claimed that detached solidifi-
cation was obtained only when the g-level was low. They
furthermore stated that crystallographic perfection was

greatly improved when ampoule contact was reduced. On

the other hand. when large accelerations were present in
flight experiments there was good contact with the am-
poule, and crystal perfection was no better than when
solidification was performed on earth. Larson's recent re-
sults [43] 44] support these claims of imi3roved perfection
resulting from detached solidification.

Rather than the melt losing contact with the ampoule
wall, it seems more likely that detached solidification arises
from an interaction between the freezing interface, the melt,
and the ampoule. One such mechanism was proposed by
Avduyevsky [57] and by Duffar, Paret-Harter, and Dusserre
[59]. A vital component of this mechanism is a rough
surface on the interior of the ampoule. The melt contacts
the wall only at the peaks, and does not penetrate into the
pits in space _. However the roughness of the ampoules used
for the cited flight experiments was not sufficient to corre-
spond to this model. Fused silica ampoules were used with
smooth interiors. Furthermore, the interior surface of most
ampoules was coated with a shiny layer of carbon in order
to reduce sticking of the ingot to the ampoule wall.

We conclude that none of the mechanisms proposed

previously for detached solidification are able to explain all
of the experimental observations. On the following pages
we describe a new mechanism that is able to explain every-
thing.

2 New Model for Detached Solidification

Following is a description of our new model for detached
solidification.

When solidification first begins, the melt is in contact
with the ampoule wall, and the solid that forms is also in
contact with the wall, as shown in fig. 1. The thermal
expansion coefficient for the solid is greater than that of the
ampoule. Consequently. as more solid is formed and cools
from the growth temperature, stress builds up between the
solid and the ampoule. Eventually this stress is sufficient for
the solid to detach from the wall, as observed in our

KC-135 flights on InSb [53]. This detachment propagates
to the growth interface, producing the geometry shown in
fig. 2. Notice that the meniscus bends inward toward the
melt at the growth interface, and contacts the ampoule wall
at the equilibrium contact angle. For convenience, let us
assume that the solid surface propagates in the direction at
which the meniscus contacts the growth interface, even

Duffar et al. [59-61] used ampoules with artificially roughened
surfaces to demonstrate that detached solidification can be pro-
duced by such a mechanism. The peaks had to be sharp in order
for the mechanism to be operative.

melt I solid

ampoule

Fig. 1. Schematic diagram of the region near the ampoule wall
during the initial solidification while the melt and the solid are both
in contact with the wall
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solid

gas

ampoule

Fig. 2. Melt and solid configuration immediately following gap
formation due to differential thermal contraction between solid and
ampoule. Note that the angle at which the meniscus contacts the
solid causes subsequent growth to enlarge the gap

melt I solid

f _rI:tS

ampoule

Fig. 3. Steady state configuration of the gap and meniscus assuming
zero growth angle

though it has been observed empirically than there is a small

angle between the two (usually referred to as the growth

angle). In this way, the growth interface moves farther and

farther away from the ampoule wall, The gap between the

solid and the ampoule increases until the meniscus is parallel

( for zero growth angle) to the ampoule wall at the point where

the meniscus contacts the growth interface. If nothing else

changes, the gap width remains constant, as shown in fig. 3.

In our model, several conditions are required for detached

growth:

(1) The thermal-expansion coefficient for the solid must be

greater than that for the ampoule, which is true for

semiconductors in quartz.

(2) The solid must not adhere strongly to the ampoule wall.

(3) The melt must not wet well the ampoule wall. i.e. the

contact angle of the melt on the ampoule must be large.

(4) The pressure of the gas in the gap must exceed that in

the melt at the meniscus. The pressure difference across

the meniscus is related to its curvature by the Laplace

equation 2.

We believe these conditions are often satisfied in semicon-

ductor crystal growth in space. I f the solid continues to adhere

to the ampoule wall over part of the circumference, we will not

observe detached solidification over that section. This is what

we believe gave rise to the ridges observed in some flight

experiments. If the ingot remains stuck to the ampoule at one

point, this attachment leads to formation of a ridge that

meanders down the ingot as it propagates.

Let us now discuss the shape and behavior of the meniscus.

In space, the hy.drostatic pressure is very small compared to

2 Duffar [56] derived the relationship between gap width, contact
angle, growth angle, and pressure difference across the meniscus.
For a gap width of 100 pm with InSb growing in silica, for
example, he calculated a pressure difference of 2.267 Pa ( 17 Torr}.

4

the pressure difference across the meniscus caused by surface

tension. For example, for an acceleration of 10 -6 of earth's

gravity and a 3 cm long column of InSb, the value of ogh is

only 0.0019 Pa ( 1.4- 10 -5 Torr), which is negligible. Because

of this and because the ampoule radius is much-larger than the

meniscus radius, the meniscus curvature most be nearly

constant. That is, the meniscus is very nearly an arc of a circle.

The meniscus contacts the ampoule wall at the equilibrium

contact angle. The meniscus angle at the corner of the growth

interface is arbitrary, but determines the growth direction

through the growth angle.

melt solid

gas

ampoule

Fig. 4. Dependence of the meniscus shape on the pressure difference
between the melt and the gas m the gap. The gas pressure is lower.for
the meniscus shape on the right, equal to the melt pressure for the
straight meniscus, and increasing larger as one moves to the shapes
on tire left

Fig. 4 shows schematically the dependence of the menis-

cus shape on the pressure difference between the gas in the

gap and the melt. The curve on the right would be expected

when the pressure in the melt is larger. In such a case, the

solid would immediately grow back to the ampoule surface

and detached growth would not be realized. The meniscus

with a straight line is for equal pressures. Those to the left

of the straight line are for increasing pressure in the gap.

Only with the meniscus on the far left would the gap increase

in width (for zero growth angle).

In order for the gap pressure to exceed that melt pressure,

there must be a source of gas flowing into the gap. This

source is one or more volatile impurities in the melt. A likely

source of such impurities is the gas the ampoule is backfilled

with prior to sealing, typically an inert or reducing gas. This

gas dissolves in the melt when the melt is produced. Another

source of volatile impurity would be reaction of the melt

with moisture to form oxide and hydrogen.

As with most other solutes, a volatile impurity would be

expected to be rejected by the growing solid and accumulate

melt solid

gas

ampoule

Fig. 5. Dependence of meniscus shape on contact angle of the melt
with the ampoule wall, assuming the melt and the gas are at the same

pressure.
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in the melt adjacent to the growth interface. Indeed, the
concentration of rejection impurity may become large

enough for gas bubbles to nucleate [62]. In the present case,
the volatile impurity is liberated through the meniscus and
into the gap. No matter how well the ampoule is evacuated
prior to sealing, some gas will remain, dissolve in the melt,
and subsequently be liberated in the gap.

Acceleration influences detached solidification in two

ways, through the shape of the meniscus and through

buoyancy-driven convention:
(1) Acceleration influences the hydrostatic pressure in the

melt at the meniscus, and in this way influences the

meniscus shape. This may explain why one does not
observe detached growth on earth. As pointed out
earlier, the hydrostatic pressure in orbiting spacecraft is
probably too small to influence meniscus shape.

(2) Acceleration influences convective transport of the
volatile impurity (dissolved gas). On earth, buoyancy-
driven convection generally would be sufficient to pre-
vent volatile impurity that had been rejected by the
freezing interface from accumulating and being liber-
ated at the meniscus. The residual acceleration in an

orbiting spacecraft may be sufficient to influence the
transport of volatile impurity, depending on the freez-
ing rate, the acceleration level and direction, and the
properties of the melt. Low acceleration levels may
increase the transport of volatile impurity to the menis-
cus, while higher accelerations may prevent accumula-
tion of impurity near the interface, as on earth. The
waviness often observed on the surface of detached

ingots may be attributed to variations in acceleration
during solidification.

Another critical parameter is the contact angle 0 of
the melt on the ampoule wall. Fig. 5 shows how the
contact angle influences the meniscus when there is no
pressure difference between the gap and the melt. As the
contact angle increases, one is more likely to have detached

growth.
Although it is beyond the scope of this paper, we men-

tion briefly the stability of the detached solidification.
Duffar [56] pointed out that detached growth by our mech-
anism suffers from capillary instabilty when the growth
angle is positive, as is typical for semiconductors. If we
imagine the crystal growing with a steady state gap width,
as in fig. 3 for zero growth angle, then any decrease in
gap width leads to a still larger gap, and vice versa. The
argument is nearly identical to Surek's [63]. which showed
the capillary instability of the diameter in Czochralski
growth. To the contrary, experience shows that Czochralski
growth is very stable. Before the advent of automatic
diameter control, little operator intervention was required.
If the heater power and pull rate were kept constant, the
diameter only slowly decreased as the melt level fell,
because of reduced heat transfer from the growing crystal.
This led to a carrot-shaped crystal. Czochralski growth
was shown to be stabilized by heat transfer [64, 65]. Simi-

larly the growth of gas tubes [66-69] during directional
solidification was shown to be capillary unstable, but stabi-
lized by the transport of volatile impurity to the bubble
surface [70].

We have begun to develop a numerical model for the
transport of volatile impurity to the merfiscus during de-
tached solidification, and expect to find that the gap width
is stabilized by this transport. In this analysis we will also
examine tile influence of thermocapillary (Marangoni) con-

vection generated by the temperature gradient along the
meniscus, as well as buoyancy-driven convection due to the
residual acceleration.

3 Benefits of Detached Solidification

In the early days of microgravity research, solidification in
space was touted as a way to achieve compositional unifor-
mity because of the supposed absence of convection. Over
the years, we have come to realize that convection can occur
in fluids in orbiting spacecraft, that materials solidified in
microgravity are not always compositionally uniform, and
that uniformity can sometimes be achieved on earth. A
better reason for solidification in microgravity may be to
achieve detached solidification. There are several possible
benefits to growth with the solid having little or no contact
with the ampoule wall. Following are some of these benefits:

( 15 improved control of stoichiometry and doping,
(25 reduced contamination of the ingot by the ampoule,
(3) eliminated stress caused by differential thermal contrac-

tion between the ingot and the ampoul&

(4) reduced nucleation of grains and twins at the ampoule
wall, and

(5) reduced heat transfer between the ingot and the fur-
nace, leading to reauced temperature gradients in the
solid, and lower thermal stress. (A more planar inter-

face may also be produced, assisting in growing out of
grain boundaries and dislocations.)

We now discuss each of these benefits of detachment.
One motivation for reduced contact is control of stoi-

chiometry. For example, one usually wants to grow gallium
arsenide slightly arsenic rich. On earth, the arsenic content
can be controlled precisely throughout solidification only in
the horizontal Bridgman method. The melt is contained in
an open boat and an arsenic source is held at a controlled
temperature. The melt and the solid are in direct contact
with the arsenic vapor. However. cylindrical ingots are not
produced in this growth technique. To produce the cylindri-
cal crystals preferred for device fabrication, we use either
vertical Bridgman growth or the Liquid Encapsulated
Czochralski technique (LEC). In LEC and the usual verti-
cal Bridgman method, the melt becomes increasingly ar-
senic rich during solidification. Detached solidification in
microgravity yields cylindrical ingots with the solid in con-
tact with the vapor. Use of triangular ampoules also leaves
three vapor passages along the melt and the resulting solid.
Inthis way interaction with the arsenic source can be

maintained throughout growth even while producing nearly

cylindrical ingots.
For many materials, the ampoule is a source of contam-

ination. In fact for some materials there is no ampoule

material that is completely non-contaminating. If contact of
the solid with the ampoule is greatly reduced, contamina-
tion will be reduced. (In our model, contamination of the
melt would still occur.)
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Rosch and Carlson [71] used a computer model to show

that by far the largest contributor to stress in Bridgman

growth is differential thermal contraction between the crys-

tal and the ampoule. This stress is strongly influenced by

the degree to which the crystal adheres to the ampoule wall.

In extreme cases, such as silicon in quartz, sticking is so

strong that the crystal breaks while cooling. Thus reduction

or elimination of contact with the ampoule wall will greatly

reduce stress during cooling from the melting point. Crys-

tals of higher perfection can be produced. It may also be

possible to directionally solidify materials in space that

cannot be grown by the Bridmaaan technique on earth, such

as silicon.

The ampoule wall can also act as a nucleation site for

twins and grains. The recent USML-1 experiment of Larson

is instructive [43, 44]. Zinc-doped CdTe was directionally

solidified from a seed in a tapered ampoule. Seeding was

successfully accomplished. Where the ampoule diameter

was increasing, the ingot was not in contact with the

ampoule wall. When the full diameter was reached, contact

with the wall was established, but only on one side. Twins.

a troublesome common defect in CdTe, formed only where

the solid was in contact with the ampoule wall. The disloca-

tion density in the microgravity-grown CdTe was 2 orders

of magnitude lower than in material solidified on earth

under otherwise identical conditions. The x-ray rocking

curve was near the theoretical value for a perfect crystal.

Detachment of the ingot from the ampoule wall also

should increase crystal perfection by decreasing thermal

stress [32, 38, 72]. A gap between the ingot and the am-

poule wall greatly increases the resistance to heat transfer
between the solid and the furnace. This, in turn, decreases

the axial and radial temperature gradients in the crystal,

resulting in reduced thermal stresses and a more planar

freezing interface. Reducing thermal stress decreases multi-

plication of dislocations. A more planar interface assists in

grain selection and growing out of dislocations. Precipitate

nucleation and growth are also influenced.

Experimental evidence for improved crystallographic

perfection brought about by detached solidification in mi-

crogravity was obtained for GaSb [32]. The Hall mobility

was significantly increased, the charge carrier concentration

was decreased, the dislocation density was decreased, the

grain size increased by solidification in space. Detached

solidification of HgCdTe caused formation of a planar

interface for the first time, and resulted in growth of a

single crystal [47].
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TECHNICAL NOTE

M. L. Fleet, S. J. Simske, A. Hoehn, T. A. Schmeister and M. W. Luttgest

An Autonomous Module for Supporting
Mice during Spaceflight

The Animal Module for Autonomous Space Support (A-

MASS) was developed to enable 30-day spaceflight for mice

on the first Commercial Exper#nent Transporter mission.

Because space hardware did not previously exist to support

mice without astronaut intervention, the A-MASS presented

considerable technical and animal care challenges. The tech-

nical challenges included maintaining a 42.5 l payload volume

and 20-g structural conformance while providing 30 days of

autonomous mouse support. Sensors, video, a pressurized

oxygen supp O' O'stem and an internal data logging system

were incorporated. The A-MASS met NIH guidelines for

temperature, humidity, food and water access, o,_vgen supply,

air quality and odor control. These technical and animal care

challenges, along with power and mass constraints, were

addressed using a novel design which ensures a fresh food and

water supply, a clean view path into the cage for the camera

O,stem, and removal of the wastes from the air suppO.. The

payload was successfully tested in an enclosed chamber and

passed animal health, vibrational, mechanical, and electrical

tests. The physiological, tactical and animal support informa-

tion gathered will be applicable to the development of mouse

support modules for the Shuttle Middeck and Space Station

Freedom Express Rack environments.

1 Introduction

Spaceflight effects on mammalian physiology are of consid-

erable interest to biomedical researchers because

(1) the long-term habitation of space is jeopardized by the

deleterious effects of spaceflight on, for example, the

cardiovascular, immune and musculoskeletal systems.

and

(2) the observed physiological effects mimic aspects of a

variety of earth-bound disorders, such as osteoporosis.

diabetes, and immunosuppression.

However, only a few flight programs currently exist

which permit long-term experiments in space. An even
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lesser number of payloads exist which take advantage of

these programs for long-term mammalian physiological

studies. The COSMOS payload provides long-term, au-

tonomous support of rats in space: however, none currently

exist for the long-term support of mice (either au-

tonomously or interact_vely).

Mice, because of their small size, relatively brief life

spans, well-characterized genetic characteristics, and the

availability of useful transgenic strains [1, 2], provide a

useful animal model for the examination of long-term

spaceflight effects on mammalian physiology [3, 4]. The

Animal Module for Autonomous SPace Support (A-

MASS) is a payload designed and developed for the sup-

port of mice in an autonomous (earth orbit) environment

for a nominal period of 30 days, the planned duration of

the first Commercial Experiment Transporter (COMET)

mission. The hardware is designed to be readily amendable

to other carriers, such as the Shuttle and Space Station.

The design and development of the A-MASS was com-

plicated by its need to provide life support. Animal care

and welfare concerns, in addition to the more typical pay-

load concerns of safety, power, volume, and mass, impacted
the A-MASS construction. The animal concerns included

careful adherence to National Institutes of Health (NIH)

[5] and American Veterinary Medical Association

(AVMA) [6] standards. Payload approval was obtained

from the Animal Care and Use Committee (ACUC) at the

University of Colorado and at the NASA Ames Research

Center. Adherence to these guidelines and protocol defini-

tions ensured that the animals were not subjected to nonex-

perimental stress or health-endangering environmental
factors within the A-MASS.

The developers of the Recovery System, Space Indus-

tries, Inc. (SIL Houston, TX, USA), specified additional

design constraints to ensure compatibility with the COMET

Recovery System. These included COMET mission safety,

minimal vibrational and electrical interference with other

COMET payloads, power draw and mass limitations, a

specific volume, and structural constraints imposed by the

forces placed on the payload during launch and during

recovery (table 1).

2 A-MASS Design Approach
2. I Food and Water

The A-MASS subsystems were designed to satisfy the ani-

mal care requirements while adhering to the engineering

62 © Hanser Publishers, Munich Microgravity sci. technol. VIII/1 (1995)
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Detached Solidification: Steady-State

Abstract

Results at Zero Gravity

A new mechanism for detached solidification in space was described in a recent paper [1]. In this mechanism, a gap

forms between the solid and the ampoule wall. The melt remains in contact with the ampoule wall, with a meniscus between

the wall and the edge of the freezing interface. Dissolved gas is transported into the gap across the meniscus, affecting the

pressure in the gap and the gap width. We have developed a steady state numerical model for convection in the melt and

transport of dissolved gas. For steady-state detached solidification to occur, the freezing rate must be below a critical value, the

residual gas pressure in the ampoule must exceed a certain level, the contact angle of the melt on the wall must exceed a

critical value, and the melt-vapor surface tension should not be too large. A large growth angle favors detached solidification.

Under some conditions, two different gap widths satisfy the governing equations.

Keywords: co'stal growth, numerical modeling, gas diffhsion.

1. INTRODUCTION

Numerous experiments on directional solidification of semiconductors in space yielded ingots with a diameter

smaller than the inner diameter of the confining ampoule [1]. This phenomenon has been called "detached

solidification" [1]. The early interpretation of the phenomenon was that poor wetting of the ampoule wall caused

the melt to have little or no contact with it. However, this explanation failed to agree with experimental

observations [2]. In the case of lead solidification [3], detachment was attributed to shrinkage upon freezing. This

explanation is irrelevant to the present discussion; moreover, it cannot be applied to semiconductors since they

expand on solidification. Another explanation of detached solidification was suggested in [4]. This model required

considerable crucible roughness, which does not allow the melt to penetrate to the bottom of the cavities. Though

the correlation between the crystal surface and crucible roughness obtained in [5] was obvious, the contraction of

the crystal diameter in detached experiments was much larger than predicted by this model. Furthermore, the



-- °

surfaces were smooth for semiconductors solidified in space. Thus, all prior attempts to explain detached

solidification met with difficulty when their predictions were compared with experimental observations.

A new model of detached solidification was proposed in [I]. An important feature of the model is the

presence of one or more volatile components, such as dissolved gas, in the melt. Here, we assumed that gas

remains in the ampoule after sealing due to residual or back-filled gas, such as argon or hydrogen. This gas

dissolves in the melt. Its concentration increases near the freezing interface because of rejection by the growing

solid (impurity segregation). When detachment takes place and the gap between the growing crystal and the

ampoule wall appears, the dissolved gas diffuses into the gap across the liquid meniscus connecting the crystal with

the ampoule. A steady-state gap width is reached when the transport of volatile species across the meniscus equals

that required to maintain a gas pressure satisfying the condition of mechanical equilibrium across the meniscus

(Fig.l).

The objective of this work was to understand steady-state detached solidification. Numerical modeling of

detached solidification in zero gravity was carried out. Equations for momentum and mass balance were solved.

The results of numerical modeling and the influence of various parameters on the steady-state gap width are

presented here. Subsequent papers will examine the stability of the gap and the influence of buoyancy-driven

convection.

2. MATHEMATICAL MODEL

2.1. Steady-State Numerical Modeling

Numerical calculations were carried out in the axisymmetric domain shown in Figure 2, using the physical

properties of InSb (see Table 1), for which detached solidification has been observed [6-11]. Values used for the

other parameters are given in Table 2. We chose a domain bounded by the axis of symmetry (r=0), the ampoule

wall (r=Ra), the meniscus, the planar solidification interface (x--0), and a boundary at some distance L_ from the

solidification interface. This distance La was chosen so that the velocity and concentration fields near the

solidification interface do not depend on its precise value. The concentration of dissolved gas at x=L_ had to he the



same as at the top of the melt column (melt free surface) _. We found that a sufficient condition is La > 0.7Ra, and

so we used L_ = 1.5 R a where the ampoule radius R_ was taken equal to 1 cm.

The velocity distribution in the melt is important for mass transport. When a tree melt/gas surface

(meniscus) exists near the solidification front, Marangoni convection, caused by the variation in surface tension

along the meniscus, takes place even at zero gravity. We studied the influence of Marangoni convection on the

dissolved gas distribution near the solidification interlace and on gas transport from the melt into the gap.

Steady-state detached growth requires steady-state velocity distribution and gas concentration distribution

in the melt. Therefore, we assumed axisymmetric, steady-state flow of an incompressible liquid with constant

viscosity and density. The velocity field was obtained in the reference frame of the interface, which moves at

constant freezing rate Vo The steady-state Navier-Stokes and continuity equations were reduced to a well-known

form [12] using the stream function formulation, where the velocity components are given by:

V - 1 3_ 1 a_• ; v - (1)
r ar r c_x

where _t is the stream function. In this way the Navier-Stokes equation, combined with the incompressible

continuity equation, takes the form:

l 0(q/,EZ_) 2 a_/

r 0(r,x) r- Ox E2ql =vEa_
(2)

where E 2 and E 4 are the operators:

E2_g = o_r 2 r ar -_ ax 2

E4_ = E2(E2_/)

(3)

The boundary conditions for the axial and radial components of velocity, Vx and V_ , are:

We should note that such a choice for the boundary conditions inside the melt is inappropriate for both the

velocity and concentration fields at non-zero gravity. The convective vortices would be distributed over the whole

melt region, providing global mixing.

4



At x = 0 (interface): V, = -V ; V = 0 (4a)

( )Atx=Lo>>e: V,.=Vc-2V c 1- -_ 1- -1 r 2 ; V_=O (4b)
Ro-kL

Atr=O (ampoule axis): _V' =0 " v, =0 (4c)
Dr

Atr= R_ (ampoule wall): V =-V. ; Vr =0 (4d)

_V_ 1
On the meniscus: V = 0 ; .... 1:_ (4e)

_n _t

where Vc is the solidification rate, and x and r are the axial and radial coordinates. At x=La, the velocity profile

shown is parabolic and satisfies the no-slip conditions at the wall as well as the total flux of melt into the freezing

interface. Here V, is the component of velocity normal to the meniscus, Vs is the component parallel to the

meniscus surface, n is the distance into the melt normal to the meniscus, p. is the viscosity of the melt, and "_,sis the

shear stress on the surface of the meniscus. A shear stress could arise from the temperature-dependence of the

surface tension, and result in a tangential dynamic boundary condition creating Marangoni flow in the melt 2.

For melt at the ampoule wall, near the line where the meniscus contacts the wall, a slip boundary

condition was used for the axial component of the velocity. This was done to avoid a singularity for the radial

component of the velocity at the contact line [13,14] and a discontinuity for the shear stress on the solid boundary.

The slip length )_ of the order 10 3 cm used in the calculations was larger than that suggested in [14] for the

present melt viscosity and contact angle, but was limited by the finite difference mesh. Although the velocity field

near the contact line is sensitive to the slip length parameter, the concentration field and gap width are not.

The combined continuity and Navier-Stokes equations were solved for the stream function _ and vorticity

co by a central difference ADE method with overrelaxation [15]. A non-uniform mesh with 74 x 74 gridpoints was

used, with a higher density of gridpoints near the meniscus. The same mesh was used for numerical solution of the

mass transfer equation. The high density of grid points near the meniscus was used to provide accuracy in the gas

flux determination. The finite difference representation of equations (1) to (3) is given in the Appendix.

2 Marangoni convection does not necessarily occur at the meniscus. The presence of a surfactant species

concentrated at the liquid-vapor interface can greatly retard or stop the motion. In semiconductor and metal melts,

for example, oxygen might serve this role, at a concentration below that required to form a second-phase oxide
film.



TheconcentrationC of gasdissolvedin themeltwasassumedtosatisfythesteadystatemasstransfer

equation:

[IOC OC 1 _ r OC] +
(5)

where D is the diffusion coefficient of gas in the melt. Following are the boundary conditions:

0C
At x = 0 (interface): D_ = -V,(I - k)C

Ox

At x = L, >> e: C = p,,,-Km,

OC
At r = 0 (ampoule axis): _ = 0

Dr

OC
At r = R, (ampoule wall): _ = 0

Dr

On the meniscus: C = Px • Krs

-- no flux

-- no flllx

(6a)

(6b)

(6c)

(6d)

(6e)

where Pm and pg are the gas pressure above the melt surface and in the gap, respectively. Here Kpm is the

solubility of gas at the top of the melt column (hot zone temperature), K_ is the solubility at the meniscus (at a

lower temperature), and k is the segregation coefficient for the dissolved gas, i.e. the ratio of concentration in solid

to that in melt at the freezing interface. The data lor solubility of gases (especially oxygen) dissolved in

semiconductor melts can be found in the literature, see references in [16]. The solubility of nitrogen at the

temperatures of most III-V semiconductors melting points is less than of oxygen and argon. We used the following

values of solubilities: K_ = 2.09"10 .5 mol cm 3 atm ] and Kpg = 1.73"10 .5 tool cm 3 atm _ at 850 K and 800 K,

respectively. As a rule, the solubility of gases in molten metals and semiconductors increases with temperature in

this temperature range. This assumption gives higher solubility of dissolved gas at the top of the melt column than

close to interface.



2.2. Gas Flux. Rate of Pressure Change in the Gap in the General Case

The volatile species (dissolved gas here) is segregated out at the freezing interface, diffuses to the

meniscus, and is liberated as gas into the gap. The total molar gas flux across the meniscus depends on the

gradient of concentration normal to the meniscus. The total molar flux Jmol into the gap was calculated from the

concentration field near the meniscus by integrating the diffusion molar flux over the total surface of the meniscus:

s _n

where n is a unit vector normal to the meniscus and S is the area of

consideration the axial symmetry of the physical domain, we used the diffusion molar flux jmol :

Jm,,_ - J mot
e

2x(Ro -_)

Therefore, recalling (8):

la

o dn

(7)

the meniscus surface. Taking into

(8)

(9)

where s is a direction tangential to the meniscus line and 1_ is the length of the meniscus line (Figure 3).

We assumed that the pressure in the melt Pm equals that over the melt column and is constant. This

assumption is equivalent to zero curvature of the melt/gas interface at the top surface. The pressure difference

across the meniscus surface is:

Ap = pg - p,, = G_ (10)

where pg is the pressure in the gap, _ is the gas/liquid surface tension, _ is the mean curvature of the meniscus.

Equation (10) is Laplace equation, which is applied here with regarding for the geometrical configuration of the

meniscus. With these assumptions and using the Ideal Gas Law, the rate of pressure change across the meniscus in

the general case equals to that in the gap and can be represenied by three terms:

dAp _ dp,, = d ( NRT .__ RT,,,._ dN NR dT NRT g dV
d---_-- dt -_t _ V ) - V dt _ V dt V 2 dt (11)



HereNisthenumberofmolesofgasin thegap,Ristheidealgasconstant,T_vgis theaveragetemperatureofthe

gasinthegap,andV isthegapvolume.Thefirsttermin (11)derivesfromdissolvedgasdiffusiontothemeniscus

andcanbeexpressedin termsof themolarflux (7). Thevalueandthesignof this termdependon the

concentrationfieldofdissolvedgasin themelt.Thesecondtermderivesfromtherateof changeofaveragegas

temperaturein thegap.Sincethesolidcoolswhilegrowthproceeds,dT_vg/dtis negative.Thistermissmalland

wasdroppedhere.Thelasttermdescribestheincreasein thegapvolumeduetogrowth.Thistermalsogivesa

negativecontributiontothe_rateofpressurechange.Thevolumeof thegap,fromgeometricalconsiderationsis:

V = rce(2R, - e)L (12)

where L is the length of the gap. It should be noted that the contraction of crystal due to cooling is 2 to 3 orders of

magnitude less than the values of the gap width used in the calculations. Consequently, this contraction was

neglected in the derivation of equation (12). Neglecting the second term in (11), the rate of pressure change in the

gap becomes:

dp_ _ RT_v _ p_ dL 2(R,, - e) de

dt rce(2R_ e)L J,_ol " P_ (13)- L dt " e(2R_- e) dt

2.3. Steady-State Gap Width Calculation

Expression (13) is zero for steady-state detached solidification. The last term in (13) is also zero (de/dt = 0). Note

that dL/dt is the solidification rate Vc. Therefore, at steady state:

dp ,_ = R T,,.,_ p,_
dt rce(2Ro - e)L Jmot ---L---V = 0 (14)

Expression (14) can now be rewritten using (8) as:

R Ta v_,

--Jm,,, - p V = 0 (15)

As derived by Duffar [17] the gap width e for steady-state growth is given by:

2or _ -0 c_ +0

e = -_-p • cos(---_), cos(-----_--)
(16)



where_ isthemeniscussurfacetension,c_is theanglebetweenthemeniscuslineandaxialdirectionatthethree-

phaseline.and0is thecontactangle(seeFigure3.)Hereweconsideredthatatsteadystate_ = or0.thegrowth

angle.Withthehelpof(I 6).theexpressionforthesteady-stategapwidthestwasfoundtobe: _

RT,,¢ _ c_ +0.
es, = V J,,o_ - 20 • cos( _ )-cos(_) (17)

Pra

3. RESULTS

Figures 4 and 5 illustrate typical results for the velocity field obtained by solving equations (1) to (3) with

the boundary conditions (4). Figure 4a shows streamlines when surface tension driven convection is not taken into

account, i.e. zero shear stress along the meniscus. Since the freezing interface and the meniscus were taken as

fixed, the flow is due solely to solidification. The melt flows into the interface with velocity -Vc. The ampoule wall

also moves at velocity -V_. Intense convection takes place when the temperature dependence of the meniscus's

surface tension is taken into account (Fig.4b). Convective vortices due to Marangoni convection are localized near

the meniscus, with the maximum velocity being two to three orders of magnitude larger than in Figure 4a. (A

constant axial temperature gradient of 10 K*cm -1 is assumed). The maximum Reynolds number is 15 for

Marangonj flow with Ma=t87 and a gap width e=0.05 cm, whereas Re=O.03 for the flow without Marangoni

convection.

The velocity field was used to solve the mass transfer equation (6). The calculation of the concentration

field was carried out for a range of parameters: inverse diffusion length VJD, residual gas pressure pm over the

melt column, and segregation coefficient k of the dissolved gas at the solidification interface. There are no data

available in the literature for segregation coefficient of gases in semiconductor melts. Consequently a range of

segregation coefficient from 0.02 to 0.1 was used in the calculations.

Figure 6 shows the resulting concentration field at zero gravity with no Marangoni convection, with lines

being constant concentration. Figure 7 shows that surface tension driven convection perturbs the concentration

field locally, near the meniscus.

From our steady-state calculations the following qualitative conclusions were made:

9



- theconcentrationfielddependsontheinversediffusionlengthVc/D,asforone-dimensionalsegregation[18].

- theconcentrationatall pointsisproportionaltothevalueof residualgaspressurePm•Withincreaseof that

pressure,theconcentrationofdissolvedgasalongthesolidificationinterfaceincreasesproportionallytoPro-

- theconcentrationofdissolvedgasneartheinterfacedecreasesasthesegregationcoefficientk increases(Fig.8).

Thegasflux acrossthemelt/gasinterface(meniscus)wasdeterminedfromtheconcentrationgradient

normaltothemeniscus,equation(10).Thecencentrationgradientvariesalongthemeniscusanddependsonthe

valueoftheinversediffusionlengthVJD(Fig.9),residualgaspressurePm,segregationcoefficientk andgapwidth

e.ForlargeVJD,thereisasteeppositiveconcentrationgradientatthemeniscusnearthefreezinginterface(s=0),

wheredissolvedgasdiffusesfromthemeltintothegap,andalargenegativegradientattheampoulewall(s=la),

wheregasdiffusesbackintothemelt.Forsmallervaluesof V¢/D,thechangeofconcentrationgradientalongthe

meniscusislessthanforlargeV¢/D.

Figure10showsthedependenceofthegasfluxonthegapwidthfordifferentvaluesof Vc/D.Forsmall

gapwidth,thefluxincreasesproportionallytoe,duetoanincreasein themeniscussurfaceareaS.Inthelimit of

largegapwidth,thetotalfluxbeginstodecreasebecauseofback-diffusionofgasintothemeltthroughtheportion

ofthemeniscusfarfrominterface.ThishappenswhenthemeniscuslengthlaexceedsthediffusionlengthDNc.

Figure10showsthedecreaseofthetotalgasfluxforlargegapwidtheandlargesolidificationrate( VJD= 30

cm-I.)

Surfacetensiondrivenconvectiondoesnotchangemuchthetotalgasflux into thegap,aithough_t

changesthedistributionofgasfluxalongthemeniscus(Fig.11).

Thesteady-stategapwidthwasobtainedbyusingequation(17).Thevalueofthemolargasflux jmol in

(17) was found numerically for several assumed values of gap width e over the range of growth rate Vc and

pressure p,_. The calculations were carried out for constant average temperature in the gap T_vg, meniscus surface

tension _, growth and contact angles. The correct steady state is found when the value of gap width calculated

from (17) equals the assumed gap width. From our calculations, the gap width is on the order of 1 mm. This value

agrees with experimental observations [7,8,11]. The results are shown in Figures 12 and 13. In the figures, the

solid lines connect the points obtained from (17) with jmoJ having been found numerically. The dotted lines

10



representtheassumedgapwidths.Theintersectionofsolidanddottedlinesgivesthecorrectvalueof steady-state

gapwidth(solidsquares).Theheavylineconnectingthesquaresin thefiguresshowsthedependenceofthecorrect

gapwidthversusVJDandPro.

Onefeatureoftheseresultsisamaximumsolidificationrate,beyondwhichasteady-stategapwidthdoes

notexist.Thereasonfor thisphenomenonin theexistenceof a maximumvalueof thegasflux (Fig.10).The

attainablegasfluxis insufficientto maintaina steady-stategapwidthfor highsolidificationrate.Similarly,for

smallresidualgaspressure,thegasflux cannotprovidethenecessarypressuredifferenceApto maintainthe

meniscuscurvatureforaconstantgapwidth.

Thedependenceof thesteady-stategapwidthon segregationcoefficientk for fixedVc/Dshowsa

maximumk at whichsteadystategrowthis still attainable(Figure14).Thisresultimpliesthatonlywhen

dissolvedgasis rejectedwell(lowk) bythegrowingsolid,cansteady-statedetachmentbereached.Theother

featureseenin Figure14is thetrendof k to decreasewith increasingVJD in orderto maintainsteady-state

detachment.Again,suchbehavioroccursbecauseof back-diffusionof gasfromthegapintothemeltnearthe

ampoulewall.WithincreasingVJD,theareaofthemeniscussurface,whereback-diffusiontakesplace,broadens.

Theonlywaytomaintainthesamevalueofgasflux is to increasegasconcentrationnearthefreezinginterface,

i.e.todecreasethesegregationcoefficient.

It-wasalsofoundthattbrsmallvaluesofVJD- 1cm_, thegapwidthbecomesdependentonthelength

of thedomainL_.In otherwords,theuseoftheboundaryconditionsfortheconcentrationfieldatx=Labecomes

inappropriateforlowsolidificationrates.In thiscase,theentiremeltcolumnmustbeconsidered.Theinfluenceof

thedomainlengthonthevalueof thegapwidthbecomeslesswith increasingsolidificationrateVcandmelt

columnlength.Thelengthofthemeltcolumnturnedouttobeunimportantbecauseasteady-stategapwidthonthe

orderof 1mmcorrespondstolargervaluesof Vc/D(> 1cml) (heavylineinFigure12).

Marangoniconvectionmakeslittledifferenceto thegapwidth,in spiteof itsdramaticinfluenceonthe

velocityandconcentrationfieldsnearthemeniscus.In otherwords,it doesnothavea largeinfluenceon the

integratedtransportofvolatilespeciesfromthefreezinginterfacetothemeniscus.

11



Thedependenceofthesteady-stategapwidthonthegrowthangleoc,contactangle0,andsurfacetension

<3"was established by varying one of the aforementioned parameters and using equation (17) for values of the gap

width around a steady-state value of 0.05 cm, with Vc/D = 10.4 cm l and the other parameters from Table 2 held

constant. The dependence of the molar gas flux j mol on gap width e can be approximated for Vc/D = 10.4 cm -I by:

j ,,,oy/D j ° ,,,,,_D o I e e (18)= a, In --+ a 3

/_ - R_ R_
a

with j°moI = 0.246"10 12 tool cm l sn, al = 0.762"10 9, a, = 0.109"10 7, a3 = 0.510"10 -7 mol cm -3 found from the

numerical calculations. The value of the gap width e used in (18) was found by substituting the parameters (or, 0,

and or) into (16). It follows from this analysis that the value of steady-state gap width increases with increasing cx

and 0, see Fig.15 and Fig.16, and decreases with increasing cy (Fig.17). The numerical values of al, az, and a3 are

valid only for small deviations of cx, 0, and cy from the values used for the numerical calculations (Table 2) since

(18) was derived for constant _, 0, and or. In changing those parameters, not only the gap width e but the area of

the meniscus surface also changes. In spite of weak dependence of the meniscus surface area on these parameters,

the values of the constants in (18) would be different.

In addition, it should be noted that if the solubility of gas in the melt is less from that used in the

calculations, this would decrease the gas flux and decrease the steady-state gap width, according to (17). To obtain

the same values of gap width, either an increase of solidification rate or partial gas pressure would be necessary.

4. CONCLUSIONS

A study of steady-state detached solidification was carried out. The numerical analysis shows that a

steady-state configuration can be achieved over a range of processing parameters; it gives values of the steady-state

gap width that are reasonable and agree with the experimental observations. Low solidification rates are favorable

to the existence of steady-state detached growth, whereas a low pressure of residual gas in the ampoule can be

insufficient to achieve steady-state detached growth. The required values of Vc and pm depend on the value of the

diffusion coefficient of gas in the semiconductor melt. on the segregation coefficient of gas at the freezing

interface, on the gas/melt surface tension, and on the values of growth and contact angles.

12
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APPENDIX

Finite difference representation and boundary conditions for momentum equation.

The governing equation (2) can be expressed in terms of vorticity to,

1 lI_-" _ _2_ l 0_)m = E2W r_ Ox 2 -t Or 2 r Or
(A.I)

as:

0o_+<aco lvro_ [a% O:co laco o]V
• OX Dr r :VL_7-' +"_T-r2 + r Dr r 2'/

(A.2)

The boundary conditions (4) can be expressed using the stream function and vorticity as:

lv 2<= r e " O) --
At x = 0 (interface): _t 2 c Ox

l V 2 e r4
At x = L. >> e: _t = --- 4- cr + V 1- r 2- 1- -1 ;

4 -II 11o- R" 2 1- -t r

At r= O (ampoule axis): _ =0; co = 0

I ave
-Zv --At r= R (ampoule wall): _ = .(R -e) _-; co = Dr

1 Ov_ _ 1 3o
On the meniscus: _t = const.= -_V(R, - e) 2 ; Ca)= On B 0s

(A.3)

Equations (A. 1), (A.2) and (I) were solved simultaneously using a finite difference representation on a nonuniform mesh.

By designating:

h i = Axi_l. i h_ = Arj_l. i

AXi.i+l AFj.i+I
E i -- E.-

Axi_l. i _ Arj_l, j

(A.4)

the first derivatives for the vorticity were taken as:
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00,) --E i20.) i_l.j ( E i- l )(l) i. j "}-(l) i+l. j

Ox hfii(1 + ci)

2 2 __ 1_)(,0i i +0)am -_ / m ,..j__ + (_ s

Or h/e/(1 +c j)

i.j+l

and the second derivatives were found to be:

02t.o

Ox'-

_ 2[aimi_i., - (1 + Ei)o)i.j +t.o;+_./]

hi-e _(1 +c;)

020) -- 2[E j(D i.j-I --(l + E j)t.l) i. j +(l) i,j.l]

0r 2 hf'cj(1 + I¢j)

The same equations have been used for finite difference representation of the stream function.

The finite difference representation of the first derivative used at the boundary was:

O_ll x=bo,,,a. = --3_1 o.j + 4_ I.i. --_! 2./Ox 2h l

O_ll.r=bo,,u" = --3_p i.o + 4_1! iA --_i i.2Or 2h I

(A.5)

(A.6)

(A.7)

The same form was used for the representation of the velocity components' derivatives at the boundaries. The boundary

conditions for the velocity components at the meniscus were derived in the (x,r)-coordinate system using the angle

between the positive direction of r-axis and the tangent to the meniscus (see Figure 3):

V =Vsin_-V cosO=0

3V = __V__r_sin 0 cos 0 + O V, sin_, ¢ _ ___.V_xrCOSZ d__ 0 V_ sin ¢ cos ¢ = 10__ff_.ff (A.8)
an Dr Ox _t as

Finite difference representation of the diffusion equation.

The same finite difference forms as for vorticity and stream function (equations (A.5) to (A.7)) were applied for

the concentration C of gas dissolved in the melt.

At the freezing interface (x----0),the material balance boundary condition was solved simultaneously with mass

transfer equation (5) with V_ = -Vc and V_---0.This was done in order to use the usual finite difference representation for

the second derivative at the boundary and to avoid imaginary finite difference points outside the computational domain. It

should be noted that diffusion along the freezing interface has been incorporated here. The expression used for the

concentration at the freezing interface in finite difference representation is:

[ 2h__D2] 2 Ej ] +Co j+iD _ 2 + 1Ct./ +C.,j__D hjZ(l+_:j) r)hj(l+E/) ' hj-cj(l+Ej) rihjcj(l+e _) (B.1)
Co, j =

- V2(l-k) 2D (e/- 1)D /2 2V(I k)+ c 4 , ---,?
_ h i" h i D hj-g i rjhjE j )
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Table 1. Parameters and physical properties of InSb used in the numerical calculations.

Parameters Symbol value Reference

Gas-melt surface tension _ 430 dyne/cm 13

(at the melting point)

Temperature dependence of dc_/dT -8* 10 .2 dyne/cm K 5
the surface tension

Contact angle 0 112 degees 15

Growth angle ff_o 25 degrees 4

Kinematic viscosity v 3.6" 10 .3 cm2/s 18
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Table2.Estimatedorassumedparametersusedin thenumericalcalculations.

Parameters
Diffusioncoefficientof

dissolvedgas
Solubility(meniscus),

800K

Symbol
D

Value
10.5cm2/s

1.73"10.5molcm3 atml

Solubility(topofmelt Kpm 2.09* 10 -5 mol cm 3 atm -_

column), 850 K

Segregation coefficient of k 0.02 - 0.1

dissolved gas at the
solidification interface

T_,_ 800 KAverage temperature of

gas in the gap
Solidification rate 2"10 .5 - 5"10 .4 cm/s

V c

Pressure of gas over the Pm 5"102 - 2.5 .103 dyne/cm 2
melt column (5" 10 -4 - 2.5* 10 .3 atm)
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NOMENCLATURE

Latin letters

al,a2,a3

C

D

e

h

jmol

Jmol

k

- Coefficients defined by equation (18), [mol cm-3];

- Concentration of dissolved gas in the melt [mol cm-3];

- Diffusion coefficient of dissolved gas in the melt [cm 2 s-t];

- Gap width [cm];

- Finite difference spacing, defined by eq.(A.4) [cm];

- Molar flux in the axisyrnmetric case (Equation (10)) [tool s -I cml];

- Molar flux of gas into the gap (Equation (8)) [mol s_];

- Segregation coefficient of dissolved gas between solid and melt: ratio of concentration in solid to that in

the melt at the freezing interface;

Kpg, Kpm - Solubility of gas dissolved in the melt at the interface (meniscus and over the melt column respectively)

[tool cm 3 atml];

- Length of the meniscus line [cm];

- Gap length [cm];

- Length of the column of melt analyzed (from the planar interface) [cm];

- lXlormal direction at the meniscus, inward toward the melt (Fig.3) [cm];

- Number of moles of gas in the gap;

- Pressure over the column of melt, assumed to be the same at L_ [dyne cm2];

- Pressure of gas in the gap [dyne cmZ];

- Pressure difference across the meniscus between the gap and the adjacent melt, Pg-Pm [dyne cm2];

- Radial direction [cm];

- Ideal gas constant, 8.314"107 [erg mol l K-I];

- Inner ampoule radius [cm];

- Meniscus radius of curvature [cm];

- Tangential direction at the meniscus [cm];

la

L

L_

n

N

Pm

Pg

Ap

r

R

R_

R_

S
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S

Tavg

V

Vx, Vr

V_

x

- Area of the meniscus [cm2];

- Average temperature in the gap [K];

- Gap volume [cm3];

- Velocity components in the melt [cm s_]_

- Solidification rate [cm s-_];

- Axial direction [cm].

Greek letters

O_

_o

0

g

V

"_sn

0)

£

- Angle between the meniscus line and the axial direction at the three-phase line [rad];

- Growth angle [rad];

- Contact angle of the melt at the ampoule wall [rad];

- Mean curvature [cm_];

- Slip length [cm];

- Dynamic viscosity of the melt [g cm -I sl];

- Kinematic viscosity of the melt [cm 2s-I];

- Surface tension of meniscus [dyne cm-1];

- Shear stress at the meniscus [dyne cm-'];

- Stream function [cm 3 st];

- Vorticity [sl],

- Ratio defined by eq.(A.5);

- Angle between the positive direction of r-axis and the tangent to the meniscus, defined in Fig.3 [deg];

Subscripts

g

m

st

- In the gap/gas;

- Over the melt column "

- Steady-state.
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FIGURE CAPTIONS

Fig.1.

Fig.2.

and 0 is contact angle.

Fig.3. Meniscus geometry.

Model of detached solidification. _

Physical domain used in the numerical calculations. Gap width is exaggerated: Here tY,o is_growth angle

Fig.4. Computed streamlines in the absence of Marangoni convection at zero _avity. Difference between the

stream function for adjacent lines is Axg=2* 10 -6 cm3/s. The flow is into the solid/melt interface at velocity -Vc=10 4

cm/s. Gap width is e=0.05 cm.

Fig.5. Computed streamlines with Marangoni convection at the meniscus at zero gravity, A_=2"10 .5 cm3/s. The

flow is into the solid/melt interface at velocity -Vc=10 "4 cm]s. The axial temperature gradient is 10 K/cm. Gap

width is e=0.05 cm.

Fig.6. Computed lines of constant concentration corresponding to the velocity field in Fig.4 without Marangoni

convection. The concentration difference between adjacent lines is AC=2*10 8 mol/cm 3. Diffusion coefficient of

dissolved gas in the melt is D=I0 5 cm2/s, segregation coefficient is k=0.03, residual gas pressure is pm=103

dyne/cm 2.

Fig.7. Computed lines of constant concentration corresponding to the velocity field in Fig.5 with Marangoni

convection, AC=2*10 8 mol/cm 3. Diffusion coefficient of dissolved gas in the melt is D=I0 5 cm2/s, segregation

coefficient is k=0.03, residual gas pressure is pm=103 dyne/cm 2.

Fig.8. Concentration along the solidification interface /br different values of segregation coefficient k without

Marangoni convection. Diffusion coefficient of gas in the melt is D=10 -5 cmZ/s, solidification rate V_ = 10 4 cm]s,

residual gas pressure is pm=103 dyne/cm 2.

Fig.9. The distribution of the normal gradient of gas concentration along the meniscus when surface tension

driven convection is not taken into account. A positive value corresponds to diffusion into the gap, a negative value

produces back-diffusion from the gap into the melt. Gap width e=0.05 cm, k=0.03, Pm= 103 dyne/cm 2.

2O



Fig.10.Thedependenceofthegasfluxjmol (equation (10)), normalized by the diffusion coefficient D, on the gap

width. The values of the gap width are assumed and are not the steady-state values. Steady-state gap widths

corresponds to the values of the flux jmol satisfying equation (I 8). _ -

Fig.t I. Comparison of the distribution of the normal gradient of gas concentration along the meniscus without

and with surface tension driven convection, corresponding to the velocity fields in Fig. 4 and Fig.5 respectively.

Vc/D = 10 cm _, e=0.05 cm. k=0.02, Pm = 2.5"103 dyne/cm 2.

Fig.12. The dependence of the steady-state gap width on inverse diffusion length VJD. Each thin solid line

connects points obtained from the numerical calculations for an assumed value of gap width; the dotted lines

indicate when the calculated gap width equals the assumed value. The thick solid line connects solutions for

steady-state gap width with fixed segregation coefficient k=0.03 and residual gas pressure Pm = 103 dyne/cm z.

Fig.13. The dependence of the steady-state gap width on residual gas pressure Pro- Each thin solid line connects

points obtained from the numerical calculations for an assumed value of gap width; the dotted lines indicate when

the calculated gap width equals the assumed value. The thick solid line connects solutions for steady-state gap

width with fixed segregation coefficient k=0.03 and VJD=10 cm -_.

Fig. 14. The dependence of the steady-state gap width on segregation coefficient k. Each dotted line indicates the

assumed value of the gap width. The thick solid line connects solutions for steady-state gap width with fixed

residual gas pressure Pm = t03 dyne/cm 2 •

Fig. 15. The dependence of the steady-state gap width on the value of growth angle c_, with other parameters as

shown in Tables 1 and 2. The dotted line shows the value of the gap width, for which the solution of (17) is exact

with the value of gas flux obtained in the numerical calculation. The solid line is the solution of (17) for different

a, approximating the value of molar gas flux by (18).

Fig.16. The dependence of the steady-state gap width on the value of contact angle 0, with other parameters as

shown in Tables 1 and 2. The dotted line shows the value of the gap width, for which the solution of (17) is exact

with the value of gas flux obtained in the numerical calculation. The solid line is the solution of (17) for different

0, approximating the value of molar gas flux by (18).
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Fig.l7. Thedependenceofthesteady-stategapwidthonthevalueofsurfacetension_, withotherparametersas

showninTables1and2.Thedottedlineshowsthevalueofthegapwidth,forwhichthesolutionof(17)isexact
_:

with the value of gas flux obtained in the numerical calculation. The solid line is the solution of (l,7)-for different

_, approximating the value of molar gas flux by (18).
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Abstract

Detached Solidification: Stability

A new mechanism for detached solidification (Figure 1) in space was described in [1]. In [2] we presented a steady

state numerical model for convection in the melt and transport of dissolved gas. In this paper the stability of the steady-state

configuration was studied. Perturbations in pressure, gap width and solidification rate were considered. For this purpose, the

concentration field of dissolved gas (found in [2]) was subjected to perturbations and the response was investigated. The

temperature field in the system was found in the present work, and its changes due to perturbations in gap width and

solidification rate were studied. It was assumed that small changes in pressure in the gap, and the gap length itself, do not

affect the temperature field. The results show that at zero gravity, stable steady-state growth is possible. The analysis predicts

stable detached solidification tor some distance. This critical distance for the onset of instability is larger for larger gap widths.

Dissolved gas transport into the gap stabilizes the steady-state detached configuration for short gap length. Heat transfer in the

system influences the local solidification rate and acts as a stabilizing force for distances on the order of the sample diameter.

Keywords: crystal growth, gas diffusion, temperature field, stabili_.

1. INTRODUCTION

The stability of solidification processes involving a free melt surface has been studied in many papers.

Most interest in stability has been for the Czochralski technique. For example, the shape and stability of the

meniscus during Czochralski growth were studied by means of numerical methods by Mika & Uelhoff [3]. They

determined the stability of the roots of the Euler equation describing the geometry of the meniscus. Surek [4]

considered Czochralski, floating zone and EFG techniques in his paper, with excluded thermal effects from the

stability analysis. It was pointed out that the stability of the diameter of the crystal growing with a free melt surface

is related to the stability of the meniscus shape. If the perturbation in diameter is such that the angle a t approaches

the crystal growth angle _.o 2, the result is a new steady-state condition. On the other hand, if the change in

i The angle between the free melt surface and the x-axis at the three-phase line (see Figure 2).

z The angle between the free melt surface and the displacement line of the growing crystal.
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diameterissuchthatccdeviatesevenmorefromo_0,thecrystaldiameterisunstable.Padday& Pitt[5]treatedthe

problemof stabilitybasedonanenergybalanceat themeniscussurface.Theanalysisof stabilityandcontrolof

Czochralskigrowth,basedona similarapproach,wasconsideredin [6],[7] and[8]. A dynamic-modelwas

obtainedbymeansof acombinedsolutionof thermalandcapillaryproblems,basedonconservationof massand

energy,andaconstant_owthangleo_0.

Thediffusionofavolatilespecies(e.g.dissolvedgas)acrossthefreemeltsurfaceinCzochralskiandEFG

crystalgrowthis notimportantforstabilityof thosesystemsbecauseit hasnoeffectonthepressureoverthe

meniscusand,hence,the shapeof themeniscus.Transportof a dissolvedgasbecomesimportantin the

developmentof gasbubbles,gaspores,or agapbetweentheampoulewallandthecrystalin Bridgmangrowth

(detachedsolidification.)Thestabilityof agasporeformingin agrowingcrystalwasdiscussedin [9].Thermal

effectswereneglected,whilecapillarityandgasdiffusionwereconsidered.Stabilitywasstudiedfortheresponseof

thesystemto a deviationfromtheequilibriumgrowthangleandtheconcentrationof volatilespeciesat the

gas/liquidsurfaceof a pore.Therateof gasconcentrationchangein theporewasfoundby takinginto

considerationtherateof gasflowacrossthemelt/gassurafaceandtherateof porevolumechange.In thecaseof

detachedsolidification(Figure1),Duffar[10]claimedthatthegapis unstablewithrespectto changesin the

meniscusshape.Neitherthermaleffectsnorthepossibilityofgastransportintothegapweretakenintoaccount.

RegelandWilcox[1] proposeda modelfor detachedsolidification,whichis shownschematicallyin

Figure1.Thepresencein themeltof oneor morevolatilecomponents,suchasdissolvedgas,is anessential

featureofthismodel.Thisgasconcentratesnearthefreezinginterfacebecauseofrejectionbythegrowingsolid

(impuritysegregation).At steady state, the dissolved gas diffuses into the gap across the liquid meniscus

connecting the crystal with the ampoule at a constant rate. If the value of this flux is enough to maintain a constant

pressure difference across the meniscus, the gap width is constant and we have steady-state detached solidification

[21.

In the present paper, we show the significance of dissolved gas transport and heat transport for stability of

the steady-state detached configuration. We carried out a dynamic stability analysis based on the system response

to infinitesimal perturbations of system parameters. We formulated a set of dynamic equations, with respect to the
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variations of the system parameters. For this purpose, the steady state energy equation was considered and the

temperature field was obtained for a number of steady-state gap widths. The response of the temperature field to

perturbations in parameters was determined from the change of interface position. The response of the

concentration field of dissolved gas in the melt was related to the change of total gas flux across the meniscus

surface.

2. MATHEMATICAL MODEL

The stability of this dynamic system was studied by the method of Liapunov [11]. This method deals with

stability criteria on the basis of a variational approach. Consider a system that exhibits steady state behavior under

some conditions. The question of stability arises when the conditions are perturbed. Stability analysis is concerned

with the rate of change of perturbed behavior.

We consider a system described by:

d____Y= M(.Y, f ,t) (1)
dt

where t is time, i is the vector of forcing functions, 2" is the vector of variables of interest. The goal is to analyze

the deviations about some fixed trajectory 2 0 . If the system is time invariant, it lacks an explicit time dependence.

The superposition principle is valid for a dynamic system, when the system is linear and the function M( ._, / ,t) is

a linear function of ._. However, it is known that a non-linear system behaves similarly to a linear system in a

sufficiently small neighborhood about equilibrium. So, it is always possible to determine the stability of a nonlinear

system by applying linear methods. The linearized equation will be:

d'7 3M _(t) ,7 + f (2)
dt _x_ _fk

If the system is time invariant, the matrices 3M_ and 0M_ are constant. Considering the autonomous case (no
aX_ af,.

forcing functions), stability is observed when all the roots ¥ in the characteristic equation



aMj [ax_ -YS_k =0

havenegativerealcomponents[11].Here8jkis thedeltafunction.

(3)

3. PROBLEM FORMULATION

3.1. Gas Flux. Rate of Pressure Change.

The steady-state concentration field for gas dissolved in the melt and the gas flux for different values of

processing parameters (growth rate, pressure of backfilled gas, gap width) were calculated in [2]. Taking into

consideration the axial symmetry of the physical domain, we used the two-dimensional flux jmo_:

Jmol - J ,,,I (4)
e

2_(R -_-)

where Jmol is the total gas flux. The dependence of jmo! on the gap width e tbr different diffusion lengths D/V¢ was

shown in Figure 6 of [2]. All of those results were obtained from the solution of the steady state diffusion equation

in the melt. We showed in [2] that the rate of pressure change in the gap is:

dp.___L_= RT p_ dL 2(R,-e) de
J,..I Pg (5)

dt r_e(2R,-e)L L dt e(2R -e) dt

where R is the ideal gas constant, L is the gap length, e is the gap width, R_ is the ampoule radius, and Yavg iS the

average gas temperature in the gap. The value and the sign of the first term depend on the concentration field of

dissolved gas in the melt. The second term describes the increase in the gap volume due to growth, while the third

is due to the increase in gap width.

3.2. Temperature field

The time-independent axisymmetric form of the energy equation, assuming constant physical properties, used in Uae

numerical calculations was:



TT) ) =° (6)

where T is the temperature (K), and ki (i=s.m,a,g) is the thermal conductivity (erg/(cm*s*K)) of crystal, melt, ampoule

material or gas, respectively. We neglected convective heat transfer in the melt since the Prandtl number of

semiconductor melts is low (lor InSb, modeled in the calculations. Pr=-v/(x=0.04 near the melting point). The physical

domain used tbr the numerical calculations is shown in Fimare 3.

The position and shape of the melt/crystal interlace were determined from the following two boundary conditions

at the solidification interface:

Tlint -- Tf

• '-- (7)Ox li,t = Q V

where Tf is the melting point of the material (K), Q is the latent heat of fusion per unit volume (positive lor solidification

and negative for melting), and V¢ is the growth rate. The other boundary conditions are:

At r = R_ (outer ampoule wall), k, 0___T= -h(T - To) (8)
3r

where h is the heat transfer coefficient between the ampoule (quartz here) and the furnace wall, and To is the furnace

temperature, assumed to vary linearly from Tc to Th (constant gradient). The value of the heat transfer coefficient used in

the calculations is 2* 10 6 erg s_ cm -_-K 1.

At r = Ra (inner ampoule wall), Re (Re = R_-e), and the meniscus:

0T 0T (9)
k i _ = kj On

where i,j refer to the two phases that meet at the boundary and n is the direction normal to the boundary.

At x -- 0, T = Tc (780 K), and at x = L_, T=Th (820 K) (10)

Equation (6) together with the thermal boundary conditions (7-10) were put into finite difference codes (see Appendix).

Heat transfer across the gap was assumed to be purely by conduction. This assumption is not a bad

approximation at the melting point of InSb (525 °C). After the calculation had been done, the heat flux across the gap was

estimated. It turned out that Ibr e = 0.05 cm, the radiative heat flux is 10-20% of the conductive heat flu×. For high

melting point materials or larger gap widths it would be necessary to consider radiative heat transfer.
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3.3. Analysis of the Stability of the Steady-State Detached Configuration

We applied the concepts described in Section 2 to study the stability of the steady,state detached

configuration. Besides perturbations in the angle tx, we also considered changes in the diffusion flux Jmol of gas

from melt into the gap across the meniscus and perturbation s in the temperature field. The perturbations in the

angle t_, the gas flux and the temperature field were related to the rate of change in the gap width e, the pressure

pg in the gap, and the gap length L. In a system with three degrees of freedom, small deviations from the steady

value of the gap width e. pressure pg in the gap, and gap length L were represented by equations (1) and (2) with

time-independent OM...__.Land _Mj = 0.

ax_ afk

Let us consider the dynamic behavior of the gap width e, pressure pg in the gap and gap length L,

subjected to infinitesimal perturbations from their equilibrium values. The rate of change of a perturbation in gap

width, d(_)e)/dt, is governed by the change in solidification rate Vc near the three,phase line and the deviation of

the angle _ from the growth angle C_o.The rate of change of pressure perturbation, d(fipg)/dt, depends on the

change in gas flux Jmoi across the meniscus and the change of gap volume. The rate of change of a perturbation in

gap length, d(SL)/dt, depends on the change in solidification rate Vc. A change in Vc leads to a change of

temperature field near the meniscus. The temperature field changes due to the resulting change in gap width and to

the thermal balance at the freezing interface. So, the dynamic behavior of the system, describing the response to

infinitesimal perturbations, can be described by internal perturbations only (no forcing function). Forcing functions

would appear in response to an external influence on the system, e.g. a change in temperature gradient in the

furnace, and are not considered here.

Taking into account the discussion above, the governing set of differential equations is:



d(Se)/ dt= a + a p(6p,) +

d(_)P_)_d t = a (ae) + ape (apg) _- apt. (SL)

d(SL)//ffd t = aa_ (Be)+ at.p @p,¢)+ aLL (SL)

°

(11)

where 8e is the perturbation in gap width, 8pg is the perturbation in pressure in the gap, and 8L is the perturbation

in gap length.

The characteristic equation, which governs stability of the detached configuration, has the form:

f(y) =y3 +bit2 +Cy +d = 0 (12)

where:

b=-(a + app + art.)

C = aeeapp + aeeaLt . + appat. L - aeLat, e -- apt.aLp -- aepape

d = a¢,apLaLp + appa¢aat, + ataa pae, - a,,appatt . - aepapt.aa, - acLapeatp (13)

The detached configuration is stable when all the roots of f(y ) in the characteristic equation (12) have negative real

components. The configuration is unstable if one or more of the roots of (12) has a positive real component. If the

roots are purely imaginary, higher order terms are necessary [11] to provide further information about the

eigenvalues y of the characteristic equation.

3.4. Determination of alj coefficients

The rate of change of gap width can be derived from geometrical considerations (see Fig.2). It is given by:

de/_dt = -V c • tan(o_ -tx 0 ) (14)

where de/dt is the rate of change of e. The variation of de/dt is:

8 (de_dt) = -5 (V. • tan(et - et o)) = -V •8o_ - tan(c_ - o_o )' 8V. (15)

The last term in (15) is zero to the first approximation, since cx-eCois near zero. The previous expression can be

rewritten as:

(30_ 8e 3or /d(Se)_dt=-V" "_ 3e +_ps 8ps (16)



Thepartialderivativesin (16)are:

0_ Ocx
--< 0 ; --< 0 _ (17)
3e 3p_ -,

The validity of the first inequality in (17) can be seen from Figure 2. The negative sign of that derivative indicates

the capillary instability of the detached configuration, pointed out by Duffar [10]. The second inequality originates

from the Laplace-Young equation when a perturbation in pressure occurs. The Laplace-Young equation for

detached solidification is [ I0]:

(y
e = _-(coso_ +cosO) (18)

Ap

and is valid not only for the steady-state gap width est but for any e. In the general case, equation (18) relates e to

the angle c_, which is not necessarily equal to the growth angle coo. The partial derivative 3c_/3e can be found by

differentiating equation ( 18):

3cx coso_ +cosO (19)
3e e .sin ot

Carrying out partial differentiation with respect to pg , we obtain:

3..__ = e (20)

3p_ ry sin e_

The coefficients ape and app can be found by applying the variation procedure to the equation for the rate of

pressure change (equation (5)):

(_ 2(R,,-e) de) RT._ (OJm, , 3J,,,,,
• . = [--q---Se +-<---Op_ + 3J"'1 _)VI

d(SP_)/ffdt:8 J"°'--_V_-P_e'_Ze) _ _e(2"-_'_e)L_. oe Opg ' OV. ')

RT., RTovx 2(R-e) _ __ _ 2(R,-e) d(_e)_d trce(2R. -e)L z Jm"lSL rcL e-(2R.m-----'-e)- Jm°lSe" _pg - 8V + 8L-pg e(2Ru-e)
(21)

Recalling that Vc=dL/dt and using (16) we find that:

d(Sp_)_d t = RT,,,., (O J,,,,, 5e 3J,,,,, 5p, 3J,, 8L - RT,,_.¢
rce(2"-_._-e)L_ Oe +_p_ + a_. rce(2-_-_e)L: J_°'_L

. - __ _ 2(R,,-e) [a 8e a pSp]RT,,,._r_Le2(2R_2(R" _e)e) z Jm,,,Se - 8p_ - P*SLL + 8L - p_ e-_, Ce) +
(22)

9
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The dependence of the rate of change of gap length on gap width (dL/dt(e) ) and gap length (dL/dt(L) ) was found

by solving the temperature field near the moving solidification interface. With a change in gap width, the

temperature field near the meniscus changes (Figure 5). The solidification interface either slows down or

accelerates, affecting dL/dt. Furthermore, the change of position of the solidification interface is coupled to the

change in solidification rate through the boundary condition for the temperature field at the freezing interface

(equation (7)). The sensitivity of the gap length to perturbations in gap width and solidification rate can be written

in the limit 5t _ 0, where t is time. Therefore,

3L OT OL OT
8L - 5e + ----SV (23)

DT Oe DT DV c

A numerical calculation roves DL/__ and aL/_ Expression (23) can be rewritten as:
/oe /oV c '

5L = OL se +--sDL __dL = _ dL - DL/_e 8e + _-_---SL (24)

De DV,. dt dt DL/'_V. %V

Substituting this expression into (24), we obtain:

),4. R T_,v._ DJ m,,i
d(_)Pg/clt = ( _e(2R - e)L ( De

2(R, - e)V. cos(cx) + cos(0)

-P* e2(2R_ - e) sin(o_)

2(R,, -e) V

P_ (2R, - e) _3 sin(ct)

DL./_ e DJ,.,, I DL/_ e p_

DL/'_V DV )+ DL/_v, L

_e + -[ RT,_., DJmo t
7ze(2R, - e)L Dp_

]6p_ + { ( R T..., OJmo,
lze(2R,, - e)L OV L j DL/4_V

/ c

g Tavg

r_eL

c

L

pg \ 1

2(R,, - e) J_o_
e2(2R --e-) 2

(25)

According to these calculations, the coefficients a0 are given by:

10



9'.cos(x+cosO Ve _L/_e 1
ape = " ape -- " aeL "= 0 " ale -- " = 0 " -': "

e sino_ (Y sincz _/'_V aLP 'aLL 0/_V

RT, v,:[Oj,,,,, OL/_oe _j,,, , 2(R-e). ! _L/_e p _ 2(R -e)

" -_e e(2R a -e) J,,otJ + -,r P_ a, ;aPe = --_ [ _V OV o,-._'_V L " e( 2 R, - e )

a -- a " -_- " " •

PP - _P ' _ _ L 2 (26)
eL _p_ L Pc e(2R, -e) aPL eL -_ L V

Since we studied the stability of the steady state, with a gap length of the order of the crystal radius, we assumed

that the temperature field does not change due to a small change in gap length, i.e. a_L= 0. The partial derivatives

dL/de and dL/dVc were found from numerical calculations perturbing the gap width and solidification rate and

studying the influence of the perturbation on the position of the freezing interface near the meniscus. Using the

results in equation (26), several terms can be dropped in system (13) to yield:

b = -(a + app + aLL )

C = aeeapp + appaLL + appall . -- aepape

d = ae_apLaLp - a,,appaLL -- a_papLaL_ (27)

4. RESULTS

Tlae stability analysis was done for different steady-state gap widths, solving equation (12) with the

coefficients a 0 from (26). i'he pamal derivatives _j,_oi/_e and _jmot/3pg and _jmoi/0Vc were aetermined numerically,

solving the mass transfer equation near steady-state. The partial derivatives 3L/3e and _L/_V¢ were determined by

solving for the temperature field and tracing the interface position near the meniscus with respect to infinitesimal

perturbations in gap width e and solidification rate Vc. Table 1 shows the numerically calculated values of the gas

flux jmol and its three partial derivatives, together with the partial derivatives of the gap length.

Typical behavior of the characteristic function f(¥) is shown in Figure 5 for two different values of the gap

width, est=0.05 cm and e_,--0.15 cm. From the analysis of the behavior of fiT) we conclude that wider gaps are more

stable than narrow ones. The conditions for stability are also sensitive to the value of the gap length L. Figures 6

and 7 show the dependence of the roots of fiT) on the gap length L for est = 0.05 cm and est = 0.15 cm, respectively.

(27)
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Thecoefficientb inequation(12)isalwayspositive.Thestabilitycriterionin thiscaseiscontrolledbya

'feedback'coefficient,c (equation(27)).Thetermsa_aLLandappaLL are on the order of 10 .5 - 10 .3 for large gap

length (L > 0.1 cm). The value of the term aeeapp in (27) is smaller (-10 -7 - t0 5) than the other terms, and so it

does not rule the stability criterion near the onset of instability. For e = 0.05 cm, the value of the gap length where

stability fails is Lc,_tic_= 0.77 cm; for e = 0.15 cm, I_,_t_¢_ -- 3.25 cm. Although the term -a_pap_ is on the order of

10 .5 to 10 .4 for large gap length, it is critical near the onset of instability. The dependence of the three terms on the

gap length L is shown in Figure 8. To have a stabilization effect, the term -a_pap_ in equation (27) must be positive.

Since a_p is always positive, a_ must have a negative value for stability. From analysis of the terms for ap_ in (26) it

can be concluded that all the contributions to ape from gas flux perturbations have a negative sign and so are

stabilizing. The pressure has a destabilizing character. Since a_p does not depend on gap length L, according to

(26), -aepa_ - l/L, whereas a_aLL is constant vs. L. The largest term in ape (equation (26)), which gives the largest

contribution to stabilization, is the response of the dissolved gas flux to a perturbation in solidification rate. So,

perturbations in solidification rate turn out to be more critical to the gas flux across the meniscus than

perturbations in the gap width or pressure. The response of the system to perturbations in solidification rate are

stabilizing. Now it is understandable, why wider gaps (large e) are stable over a longer distance (large L¢,lu¢_) than

narrower gaps. The equilibrium pressure pg for narrower gaps is larger, according to (18). So, the destabilizing

term in ape is larger than for wider gap width. The response of gas flux to perturbations in gap width and

solidification rate is not so pronounced for narrow gaps as for wider ones, anct cannot compensate lbr the rise or

pressure due to a narrowing gap width.

With proceeding growth, the influence of gas transport on the rate of pressure change becomes less

important with increasing gap volume, i.e. ape decreases with increasing L. Beyond a critical detached length Lc,itic_

none of the mechanisms of gas transport are sufficient to stabilize steady-state growth. The response of the

temperature field to perturbations in gap width and solidification rate is stabilizing, since the response of the

interface position to a change in solidification rate gives a positive contribution to the b-coefficient in (27). Due to

the large difference in thermal conductivity between a solid and a gas, a change in gap width changes the interface

shape and position, thus affecting the solidification rate. The change in gap width causes the interface position to

12



decreasewithincreasinggapwidth,i.e. OL/_ < 0. Thismeansthatthetemperaturefielddoesnotallowthe
/O e

pressure in the gap to change drastically, since it preserves the gap volume to be nearly constant. Linear stability

analysis in this case predicts Lcnu_a to be on the order of experimentally observed values [13-17], which is -1- 3 cm

for a gap width on the order of 0.05-0.1 cm. The trend of the critical value to increase with increasing gap width is

seen from Figure 9. The deviation at small gap widths is probably due to numerical errors in calculating the gas

flux and temperature field near the meniscus. This problem arises because for a smaller gap width, fewer

gridpoints along the meniscus were used in the finite difference calculations. As a result, there was less accuracy in

these numerical calculations.

5. CONCI,USIONS

A stability analysis of the steady-state detached configuration was carried out. Numerical analysis shows

that a stable steady-state configuration can be achieved over a range of processing parameters. This analysis

predicts stable detached solidification up to a critical gap length, which is larger for larger gap widths. With

proceeding detached growth, the stability conditions deteriorate. Dissolved gas transport into the gap tends to

stabilize the steady-state detached configuration, although no mechanism of gas transport is sufficient to provide

stability for large gap length. Heat transfer in the system influences the local solidification rate at the three-phase

line and, theretbre, strongly affects the meniscus shape and stability. The variation in solidification rate due to a

perturbation in the temperature field stabilizes the detached configuration. Thereiore, heat transfer together with

mass transfer act as stabilizing phenomena for detached solidification.
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APPENDIX

Finite-difference representation of the energy equation (6)

Equation (6) was solved using a finite difference representation on a nonuniform mesh. Having designated:

hi_ l = Axi_t. i hj-i = Arj_l, j

h i = Axi,i+ 1 hj = ArLj+I

the finite difference representation of equation (6) was taken as:

_ (hi l-h i)
hi k i _/ 4 hi-_ +hi)hi l (hi-l-hi)+hi) kij)'Ti+t/ +(hi_12(hi_l +hi)(hi2(hi_l +hi) ki+/'-') hi2(hi_l • , -,., ,

ki j ) "Ti_l,j +...

r,

(A.1)

(h. 2 -h.2_

hit hi _ i__277____ Jkij+...
(hi2(h_'i-l-_t_hi) ki+g., j 4 hi_t2(hi_l +hi)ki__,j hi-hi I- "

_hj _ r/+14,. (hi_ _-h/) ki.j)'Ti,j+' +(hi -12( rj hi_t'(h/_ , +h/)""+(h/2(hi__ +h/) r� kii÷_ hiZ(h/__ +h/) _+h/) ki'/-_ + "
%)" Tj-i

.°°-_
h _l

hi-(hi_ t +hi) ki'i*'/- + hj_lZ(hi_ t +hi) ki'i-/'- hi2hj_l 2 ',J"

(A.2)

where i+_ and j+_ are points in the mid-position between grid points (see Fig.A1). The thermal conductivity

must be evaluated at those points. The position of the freezing interface was found by keeping the interface at constant

temperature (first equality in (7)), and calculating the new interface position in each iteration cycle, using the second

equality in (7) (see Fig.A2):

Q. - _JO. 2 - 4QV_.Axi_L,k,(T I - T__, i)
X f : Xi_ 1 "1- " (A.3)

cOL

where Q_ =- k (T I - Ti_l.)) + k,(Ti, j - Ty) + QV.Axi_Li.

Outside the ampoule wall (in the furnace), a constant temperature gradient along the wall was assumed. The boundary

condition used at that boundary was Newton's law of cooling with a heat transfer coefficient between quartz and gas. The

finite difference representation of this boundary condition is:

T/,imax

4 _Jm J_t h
r,,io,,-i + Vo(X)

Ari_,,-,./_., (2ri_., + Ar_.. _Li_., ) kf"= (A.4)
4r j, h

ml -I- --

k_Ari,, _1.io,, (2 r/o._ + Ario. _t.j=,, )

At the boundaries of different phases, continuity of heat flux was utilized.

The temperature at every boundary, where the constant temperature is not specified, was recalculated from the

temperatures in the bulk of phases every iteration cycle.

16



Table1.Parametersusedinthestabilityanalysis.

Parameters Symbol Value Reference

Thermalconductivityof
InSbmelt

Thermalconductivityof
InSbsolid

Thermalconductivityof
quartz

Thermalconductivityof
gasin thegap

Heattransfercoefficient
betweenampoulewalland

thefurnacewall

Latentheatof
solidificationperunit

volumeofInSb

kl

Segregation coefficient of

dissolved gas at the
solidification interface

ks

ka

k_

Q

Diffusion coefficient of
D

dissolved gas

k

Average temperature of

gas in the gap TavR

Meniscus surface tension cy

Contact angle 0

Growth angle _o

1.3"106

erfl(cm*K*s)

4.6* 105

erg/(cm*K*s)

2.104

erfl(cm*K*s)

2"106

erg/(cm-'*K*s)

1.3"10 l°

erg/cm 3

[18]

[18]

[!9]

assumed

assumed

[18]

I0 "5 cm2/s assumed

0.03 assumed

8OO K assumed to be at

melting point

430 erg/cm 2 [21]

112 degrees [21]

25 degrees [20]

17



Table2.Numericalvaluesofthegasfluxandpartialderivativeusedinthestabilityanalysis.Residualgas
pressure,Pm= 103 dYne/cm2.

Steady-

state

gap

Width,

est, cm

Inverse

diffusion

Gas flux,

jmol/D

length,

Vc/D, cm-1

(calculated

in [2])

mol/cm 3

_J,,,,i _ / D

De J

mol/cm _

/ 3J,,,,i / / D

mol/erg tool s/cm 4
s

0.018 6.2 2.38"10 -8 -0.64"10 .6 -0.15"10 tl 2.88"10 .4 -1.52 -9.5

0.032 10.0 3.92"10 .8 -1.10"10 -6 -0.36"10 -_t 0.80"10 .4 -1.41 -9.5

0.05 10.4 4.47"10 s -1.16"10 .6 -0.75"10 ll 0.43"10 .4 -1.31 -9.5

9.084 10.0 4.69"10 .8 -1.40"10 -ll 0.60"10 -4 -1.17 -9.5

_1.92.10 it 1.51"10 .4 - 1.03 -9.54.57.10 .80.12 8.6

0.15 7.5 4.0"10 .8 -0.60"10 .6 -2.36"10 ll 2.83"10 .4 -0.90 -9.5
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NOMENCLATURE

Latin letters

C

D

e

f

h

jmo!

Jmol

k

- Coefficient in stability analysis (i.j = e,pg,L);

- Concentration of dissolved gas in the melt [mole cm-3];

- Diffusion coefficient of dissolved gas in the melt [cm 2 s_];

- Gap width [cm];

- Characteristic function.(in equation 20);

- Heat transfer coefficient between outer ampoule wall and furnace ambient

- Molar flux in the axisymmetric case (Equation (10)) [mol s -I cml];

- Molar flux of dissolved gas into the gap (Equation (8)) [tool st];

- Segregation coefficient of dissolved gas between solid and melt;

k_,kg,ks,ka - Thermal conductivities of the phases (liquid, gas, solid, and ampoule material)

la

L

La

M

n

N

Pm

Pg

Ap

r

R

Ra

Q

S

[erg cm -2 s l K'l];

[erg cm l s t K'_];

- Length of the meniscus line [cm];

- Gap length [cm];

- Length of the column of melt analyzed (from the planar interface) [cm];

- Dynamic function, defined by (1);

- Normal direction at the meniscus, inward toward the melt (Fig.3) [cm];

- Number of moles of gas in the gap;

- Pressure over the column of melt, assumed to be the same at L_ [dyne cm2];

- Pressure of gas in the gap [dyne cm-2];

- Pressure difference across the meniscus between the gap and the adjacent melt, Pg-Pm [dyne cm2];

- Radial direction [cm];

- Ideal gas constant, 8.314"107 [erg mole 1 K_];

- Inner ampoule radius [cm];

- Latent heat of solidification per unit volume [erg cm-3];

- Tangential direction at the meniscus [cm];

19



S

T

Tavg

V

V_

x

- Area of the meniscus [cm2];

- Temperature [K]:

- Average temperature in the gap [K];

- Gap volume [cm3];

- Solidification rate [cm s-l];

- Axial direction [cm];

Greek letters

(t

cto

0

(Y

Subscripts

- Angle between the meniscus line and the axial direction at the three-phase line (Fig.2) [rad];

- Growth angle [rad];

- Contact angle of the melt at the ampoule wall [rad];

- Surface tension of meniscus [dyne cm-I];

- Ampoule (within the wall);

- Cold zone;

- Freezing interface;

- Gas;

- Hot zone;

- Melt(liquid);

- Solid;

- Furnace
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FIGURE CAPTIONS

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.A1.

Fig.A2.

Model of detached solidification. _

Meniscus geometry.

Physical domain used in the numerical calcu!ations of the temperature field.

Steady-state isotherms for different gap widths. With increasing gap width e, the freezing interface is

closer to the cooler zone and becomes more planar. The temperature difference between the isotherms is

0.66 K.

The behavior of the characteristic function f(y ) near zero for e = 0.05 cm and e = 0.15 cm. Gap length L

= 0.7 cm.

Stability of a detached configuration, obtained by considering gas transport and heat transfer in the

analysis. Points are numerical values of the largest real parts of the roots of characteristic equation (14).

This gap is stable only when it is less than 0.77 cm long. The gap width is e = 0.05 cm, Vc/D = 10.4 cm d,

Pm = 103 dyne/cm 2, k = 0.03.

Stability of another detached configuration, obtained by considering gas transport and heat transfer in the

analysis. Points are numerical values of the largest real parts of the roots of characteristic equation (14).

This gap is stable only when it is less than 3.25 cm long. The gap width is e = 0.15 cm, Vc/D = 7.5 cm d,

Pm = 103 dyne/cm 2, k = 0.03.

Behavior of the components of the c-coefficient in equation (29) for e=O.05 cm. The critical gap length,

when the instability first arises, is Lcritical = 0.77 cm.

The dependence of the critical gap length Lcriticai, at which the onset of instability takes place, on e. The

deviation from the trend at small e is probably due to numerical errors because of fewer mesh points at the

meniscus.

Grid points used for the finite difference representation of the energy equation (6).

Finite difference grid near the freezing interface.
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Detached

Abstract

Solidification: Influence of Acceleration and Heat Transfer

A new mechanism for detached solidification (Figure I) in space was proposed in [1]. A model for the steady state

was given in [2], and a linear stability analysis in [3]. Here we describe a numerical model for the two-dimensional flow and

concentration fields in steady-state detached configuration for the vertical Bridgman-Stockbarger and Gradient Freeze growth

techniques at accelerations from zero to go (go = earth's gravity). This modeling allowed us to gain insight on the influence of

gravity on transport of a volatile species across the gas/meh meniscus. Transport into the gap is essential for detached

solidification to persist. The possibility of detached solidification on earth is very important, since it would allow manufacture

of crystals of higher perfection [1]. Even in microgravity, where the residual accelerations are considerable, buoyancy-driven

convection is significant and should be taken into account. Different convection regimes are provided by different furnace

configurations and thermal boundary conditions. Several of these were studied in order to find the most effective one for a

sufficient amount of gas to be transported into the gap on earth. The results suggest that the most crucial parameter affecting

the amount of gas transported into the gap is the shape of the freezing interface. Very gentle outward- directed convection can

greatly increase the transport of the volatile species, and thereby enhance detachment. On the other hand, the usual levels of

convection at earth's gravity cause mixing of the melt and thereby make detached solidification impossible.

Keywords: co,stal growth, gas diffusion, buoyancy convection, gravit)'.

1. INTRODUCTION

The vertical Bridgman-Stockbarger (VBS) and vertical gradient freeze (VGF) methods are successfully

used for growing semiconducting materials, both on earth and in microgravity. As described in [1], detached

solidification yields improvements in crystallographic perfection. Until recently, detachment had been reported

only in space experiments. One may ask, therefore, why is detached solidification so rare on earth? Figure l shows

a schematic diagram of detached solidification as it would appear on earth. The gas pressure in the gap must equal

the residual gas pressure over the melt, plus that due to the hydrostatic head of melt above the meniscus, plus that

due to curvature of the meniscus. Increasing gravity from zero has three effects:

I. It causes the curvature of the meniscus to vary with height. For the usual small gap widths, this is

negligible and is considered no further in the present paper.



2. If the gap width e is to be maintained at the same value, the flux of gas into the gap must be increased by

the same amount by which the hydrostatic head increases the pressure in that gap.

3. It causes buoyancy-driven convection, which may provide the additional flux required iN 2 if it is in the

correct direction and of the correct magnitude.

The influence of convection on the transport of a volatile species is closely related to non-uniform doping

in directional solidification. The influence of convection on axial and radial se_egation of dopant has been studied

numerically, analytically, and experimentally by many authors [e.g., 4-18]. It was shown that radial segregation

depends on the magnitude of the convection compared to the freezing rate. Different controlling parameters have

been considered, such as the temperature profile in the furnace. The majority of the models considered melts with a

low Prandtl number, which is true for semiconductors and metals.

Convection in the melt can be induced by radial and axial temperature gradients. If the density of the melt

decreases with height, then buoyancy-driven convection arises solely from the radial temperature gradient, which

appears in the melt due to heat transfer between the ampoule and the furnace. The curvature of the interface

reflects the radial temperature gradient at that position, since the interface is an isotherm for a single component

system at low freezing rates. The curvature of the freezing interface has a strong influence on the impurity

concentration distribution in the melt along this interface.

Chang and Brown [8] showed that in VBS growth with a stabilizing axial thermal gradient, convection

arises from the radial temperature gradients and can cause considerable radial segregation. For a convex or planar

freezing interface, the concentration of a dopant with a distribution coefficient k<l is larger at the ampoule wall

than at the axis. The opposite result was predicted for the VGF technique with a concave freezing interface [10].

Independent of the direction of the convective flow, the radial segregation has a maximum versus Rayleigh

number, beyond which the melt becomes increasingly mixed and homogeneous in composition [16].

An essential feature of our model for detached solidification [1-3] is the presence in the melt of one or

more volatile components, such as a dissolved gas. The concentration of this component near the freezing interface

is higher than in the bulk of the melt because of rejection by the growing solid (k<l). The volatile species diffuses

into the gap across the liquid meniscus connecting the crystal with the ampoule wall. The value of this flux is

determined by the concentration field near the meniscus [2]. In the present paper, we study the significance of



convectioninducedbygravityontransportof thevolatilecomponentandthepossibleexistenceof steady-state

detachedsolidification.We carriedout numericalcalculationstbr the axisymmetricsteadY-statevelocity,

temperature,andconcentrationfieldsfor solidificationin theVBSandVGFconfigurations.The_equationswere

formulatedin cylindricalcoordinateswitha referenceframeof themovinginterface.Thediffusioncoefficient,

solubilityof gasin themelt,andthesegregationcoefficientof dissolvedgasat thefreezinginterlace,though

unknown,wereassumedtobephysicallyreasonablevalues.

Asshownin [2],thepressurein thegapdeterminesthegapwidthin steady-statedetachedsolidification.

Gastransportinto thegapcanbeeitherenhancedor suppressedby convectionarisingfroma non-zero

acceleration.Adecreaseofgastransportintothegapwouldleadtoa tall of pressure in the gap and an inability to

sustain detachment. On the other hand, increased transport would favor detachment. The following conditions that

influence buoyancy-driven convection are considered in this paper:

1. Acceleration direction and magnitude.

2. Growth method (furnace temperature profile).

3. For the VGF, a) heat transfer coefficient between the ampoule and the furnace wall; b) growth rate; c) direction

of gravity.

4. For the VBS, a) temperatures of hot and cold zones; b) length of adiabatic zone; c) position of adiabatic zone, d)

ampoule diameter, e) gap width.

2. HYDROSTATIC PRESSURE

The hydrostatic head due to a column of melt Lm high is given by:

Ap_, = pgL (1)

It is instructive to consider an example. Let us consider a 10 cm column of molten InSb, the relevant properties for

which are given in Table 1. Equation (1) yields a pressure of 6.3* 104 dyne/cm 2, or 47 torr.

The pressure change across the meniscus due to curvature is related to the steady-state gap width by [ 19]:



Ap< = _----(cosCz + cos0) (2)
e

where cy is the surface tension of the melt, c_ is the growth angle, and 0 is the contact angle. Again, it is instructive

to consider lnSb as an example. For the properties shown in Table 1, a 10 cm height of melt gives the same

pressure change as a gap width of 36 _m. Thus if the residual gas pressure Pm above the melt is much less than 47

torr, we would have to double the gas flux into the gap in order to maintain its width at 36 _m. The required

increase in flux can be calculated by considering the rate of increase of gap volume:

required flux increase V e(pgL m )
- (3)

2nR_ RTg_p

where Vc is the growth rate. R is the ideal gas constant and Ygap is the average temperature in the gap.

it also follows that inversion of the furnace, so that the solid is above the melt, may reduce the pressure in

the gap required to support detached solidification. The success of such a measure would depend on the force used

to support the melt from below and the continued availability of a volatile species to be liberated into the gap.

3. MATHEMATICAL MODEL HEAT TRANSFER AND CONVECTION

Computations were carried out for InSb, as in our previous papers [2,3].

3.1. Temperature field

The numerical model for the steady-state temperature field was described in [3]. We applied the finite

difference discretization scheme to describe the steady-state governing equation for heat transfer:

't,7 t + ax-"y = 0 (4)

In equation (4) k_designates the thermal conductivity of the i_ phase (melt, crystal, ampoule material or gas in the gap).

We neglected convective heat transler in the melt since the Prand_tl numbel of semiconductor melts is low (for InSb used

in the calculations, Pr = v/_c = 0.04 near the melting point). The position and shape of the melt/crystal interface were

determined from the following two boundary conditions at the solidification interface:



7"lint=
(5)

k oT k OT
" _x li._ _x li.t. Q V

where Q is the latent heat of fusion per unit volume, V_ is the growth rate. and Tf is the temperature of the freezing

interface (here assumed to be equal to the melting point of InSb). At the ampoule outer wall, Newton's law of cooling

was assumed. The heat transfer coefficient between the ampoule and the furnace wall was assumed to be temperature

independent. Heat transfer across the gap was considered to be purely by conduction. At phase boundaries where no phase

transition takes place, heat flux is equal on both sides of the boundary. The details of the finite difference discretization

were given in the Appendix of [3].

The numerical calculations were carried out for VBS (Brid) and VGF (Grad) techniques as shown in Figure 2

under the conditions summarized in Table 2.

The following assumptions were made:

- hot and cold zone temperatures are constant and uniform;

- the insulation zone in VBS furnace is perfectly adiabatic:

- no heat transfer by natural convection in the melt;

- thermal properties are not temperature dependent;

- all transients are neglected.

3.2. Gravitational convection

The numerical method used lor solving the Navier-Stokes equation was presented in [2]. Following [2],

we assumed axisymmetric, incompressible and Newtonian flow of the melt in a cylindrical ampoule in the reference frame

of the moving interface. The governing equation was expressed in terms of the stream function _ and the temperature T

as:

2 aq _T
1 3(_,E_-_) + ___E___ + ,A_E4 _ _ _rgr_._.r = 0 (6)
r _(r, x) r'- _x Pm

Here g is the acceleration of _avity, and 13-ris the thermal volume expansion coefficient. E 2 and E4 are the operators:



E2 _ _ 02_ 1 _ 82_! ; E4_1 = E2(E2_I! ) (7)
8r'- r _r _" 8x _-

The radial and axial components of the velocity are:

10gt 1 D_
V, - V r - (8)

r Dr r Dx

Thus me velocity field becomes dependent on the acceleration and the radial temperature gradients in the melt.

The boundary conditions on the velocity assume no-slip at the interface and the ampoule wall, and perfect slip at the

meniscus. The validity of the boundary conditions on the melt free surface (far above the freezing interface) was discussed

in [2]. It should be mentioned, that the velocity boundary conditions at the top free melt surface do not greatly affect the

solute field in the melt, especially for small segregation c_fficients and small diffusion length. Syrmnet_,'y boundary

conditions at the axis of the cylindrical ampoule were specified.

The convection calculations were carried out for the thermal configurations Grad-I, Grad-m, Brid-I, and Brid-II,

shown in Table 2. The overrelaxation parameter for the central finite difference method was E = t.7 for both the vorticity

and the stream function calculations.

3.3. Concentration field

The steady-state concentration field for the volatile species in the melt and its flux into the gap for

different values of the processing parameters (growth rate, pressure of backfilled gas, gap width) were calculated in

[2]. Zero gravity was assumed, so there was no gravity-induced convection. Even in the microgravity environment

of space, buoyancy-driven convection can cause considerable convective mass transfer in liquid because the

Schmidt number is very large.

The convective terms on the left-hand side of the mass transfer equation:

v DC+vOC .[, D(rJC I a2c l
Dr . D-S-=D Lr-Y;rk -YTr)+ Dx=J

(9)



areknown[20]tobetheoriginofthedivergenceofthefinitedifferencesolutionof theellipticPDE(9),whereV_

arethecomponentsofthevelocity,andDis thediffusioncoefficientin themelt.Theproblemcanbesolvedby

using asymmetric weighting functions, still conserving the finite difference discretization [20]. The method for

solving the two-dimensional problem using five finite-difference grid points is not as accurate as using nine points.

However, ach'eving the high-order accuracy makes the discretization very laborious, especially ;.n cylindrical

coordiqates with the explicit r-dependence of (9). A one-dimensional asymmetric weighting function was applied

in both r- and x-directions. The values of the weighting coefficients were calculated from the local mass transfer

Peclet number:

V to,. . h i
Pe/ .... i (10)

D

where i=r,x;-hi is the local mesh size (Ax or Ar) _, and 'loc' corresponds to the local grid point. The calculations

were carried out according to [21]:

P e i,,,. p l,,,.
- ,-,-/,,. ; rl = coth( ) (11)

re x per 1""

which minimizes the numerical error. Therefore, the values of the weighting coefficients _ and r 1 were dependent

on the local velocity and the grid size. The finer the grid (smaller hi), the smaller values of _ and rI were required.

Hence, the choice of _ and r1 between 0 and 1 allowed us to avoid increasing the number of the grid points in order

to have a convergent result. Ali of the details oi" the finite difference discretization using asymmetric weighting

functions are given in the Appendix.

The boundary conditions used in the calculations were the same as described in [2]. At the ampoule wall

and the axis of symmetry the radial gradient of concentration was set equal to zero. At the free melt surfaces (top of

the melt and the meniscus), the gas concentration was assumed constant, and was related to the pressure over the

melt through the temperature-dependent solubility coefficient. The boundary condition at the freezing interface for

conservation of mass is:

SC
D_ = -V.(1- k)C (12)

Ox

t For the nonuniform grid used in the calculations, hx = (Axj.l + Axj)/2, and hr = (Arj_l + Arj)/2



whereVcis thegrowthrate,andk is thesegregationcoefficientof volatilespeciesat thefreezinginterface.

Diffusionin thesolidphasewasneglected.

4. GRADIENT FREEZE CONFIGURATION

4.1. Temperature field

The computed temperature fields for the gradient freeze technique are shown in Figures 3a and 3b for

several conditions. In Figure 3a, the gap width is zero, i.e. there is no detachment. The interface is concave, as

expected for the gradient freeze technique [22]. The deflection of the interface from planarity is large; 14 % of the

ampoule radius (Figure 4a_. For weaker heat transfer (Grad-llI) between the ampoule and the furnace, the freezing

interlace is less concave than when the heat transfer coefficient is ten times larger (Grad-I). In Figure 3b, the gap

width is 0.12 cm. The gas in the gap has a much lower thermal conductivity than the solid, and so improves the

thermal isolation of the solid from the furnace, thus reducing the radial temperature gradient. A decreased radial

temperature gradient is reflected in a decreased interface curvature (Figure 4b). One would expect that in this case

there would be much less convection. Since the deflection z/(Ra-e) of the interface is only about 3% for a heat

transfer coefficient h of 2"106 erg s-_ cm -2 K l, and about -0.5% for h = 2"105 erg s j cm -z K l, we did not consider

the interlace curvature in the convection calculations. The interface was assumed to be a non-isothermal planar

boundary, which is a radial cut at the circumference where the meniscus contacts the freezing interface. The

interface curvature was taken into account for a gap width e of 0.05 cm, for which the interface deflection is

significant. It turned out that the assumption of a non-isothermal planar boundary is not bad for small deflections.

Even for an interlace deflection of 7% the velocity field near the meniscus does not differ for a planar non-

isothermal boundary compared to the case when the interface curvature is incorporated in the discretisized

equations.

In [3] it was lbund that the interface position shifts to the cold zone of the furnace with increasing gap

width and with increasing solidification rate (all other parameters held constant). Here, we found that the

deflection of the freezing interface shape from planarity decreases with increasing gap width, i.e. dz/de < 0. The



responseoftheinterfaceshapetoachangeinsolidificationratehastheoppositetrend.Theinterfacebecomeseven

moreconcavewithincreasingVc,sodz/dVc>0.Thisresultissimilartothatreportedin theliterature[e.g.,17].

4.2.Buoyancy-driven convection

TheradialtemperaturegradientnearthefreezinginterfacedoesnotdiffermuchforGrad-IandGrad-II

(differenthotzoneandcoldzonetemperatures).In spiteof thechangeiv.positionof thefreezinginterface,the

shapeandthedeflectionof theinterfacefromplanaritydonotchangesignificantly.So,wedonotexpectmuch

influenceonconvection.Hence,thevelocityfieldwascalculatedonlyforthetwothermalconfigurationsthatdiffer

in thevalueofheattransfercoefficientbetweentheampouleandthefurnace.Theconvectiveregimesaresimilar

(Fig5aand5b),witha transitionfromlinearflow (controlledby crystallization)to circulatingflowasg is

increased.Thistransitiontakesplaceatahigherg fortheconfigurationwiththelowerheattransfercoefficient

(Grad-III)thanfortheconfigurationwithh oneorderofmagnitudelarger(Grad-I).Forbothconfigurations,this

transitionpointisbetween10.4and10.3go.Theradialtemperaturegradientisnegativethroughoutthemelt.This

resultsinflowdownward(towardthefreezinginterface)alongtheampoulewallandupwardalongtheaxis.

Thetransitionof theflowregimefromlineartocirculating(Figures5 a,b)occursataparticularRayleigh

numberthatdependsonthethermalconfiguration.HerewedefinetheRayleighnumberas:

Ra _rg(T" - Tr) R 4= " (13)
r

£t V /'-" ,n

where _-r is the volumetric thermal expansion coefficient, Th and Tt- are the hot zone and the freezing interface

temperatures, respectively, L,, is the length of the melt column, and tx and v are the thermal diffusivity and

kinematic viscosity of the melt. As shown in Figure 6, a decrease of heat transfer coefficient between the ampoule

and the furnace wall shifts the flow transition point to a higher Rayleigh number.

The effect of the interface shape was studied for a gap width e of 0.05 cm. Although the interface

deflection is large for the Grad-I configuration, a secondary eonvective cell does not appear. This is because the

radial temperature gradient does not change sign in the melt.

I0



Forg above10.5-10-4go,inversionofthefurnace(growthdown)causestheconvectiveflowtochange

directionandslightlyincreaseinmagnitude.

4.3. Concentration field

The concentration field obtained for the gradient freeze configuration (Grad-I) at different gravity levels is

shown in Figure 7. These results are similar to those in [10]. The maximum concentration at the interface remains

at the axis of symmetry at all values of g, unless g is directed in the opposite direction from shown in Figure 1

(inverted furnace). In the inverted gradient freeze technique, gas accumulates near the meniscus.

Figure 7 shows the transition from a pure diffusion regime for mass transfer to a convective regime with

mixing. This transition takes place at a Rayleigh number (in Figure 6 Ra-0.1) corresDondin_ to the transition to

circulating convection. For a lower heat transfer coefficient h, mixing starts at a larger Rayleigh number.

Gas mass transfer across the meniscus was calculated from the concentration field according to [2]:

/.

J,.o, = -DfOC ds (14)
ao _n

where jmo| is the molar diffusion flux per unit length in the axisymmetric domain, la is the length of the meniscus

line, and the integration is carried out along the meniscus line. The dependence of jmol on the gap width e and

diffusion length D/V. at zero gravity was shown in [2]. Here. we compare the present results with the results i.,3 {2]

for zero gravity.

Figures 8 shows the radial concentration profiles for the Grad-I thermal configuration. The slope of the

curves at the meniscus (the very right end of the curves) determines, to a first approximation, the gas flux into the

gap. Figures 9 shows the concentration gradient normal to the meniscus. With increasing gravity, the curves shift

downward. The value of the total gas flux, which is proportional to the area under the curve, diminishes and even

becomes negative for higher g with the gap width held constant.

The solidification rate does not influence the mass transfer across the meniscus as much as the

acceleration does. This is shown in Figure 10, where the value of the gas flux drops slightly when Vc is increased

from 10.4 crn/s to 2"10 -4 cm/s (solid and open squares in the figure).

11



Theeffectoftheheattransfercoefficienth ontheconcentrationfieldismorepronouncedthantheeffect

ofthegrowthrate.Decreasinghcausesthegasfluxintothegaptomaintainitsvaluetog.

Solidificationwithaninvertedfurnacechangesthedirectionofbuoyancy-drivenconvectionrelativetothe

freezinginterface.As a result, there is an enhanced gas transfei into the gap with increasing convection, until bulk

mixing lowers the concentration at the freezing interlace. Thus, for example, detached solidification in

microgravity would be enhanced by proper orientation of the furnace relative to the residual acceleration vector.

Excessive g-jitter, on the other hand, could mix the melt and eliminate detached solidification.

5. VERTICAL BRIDGMAN-STOCKBARGER CONFIGURATION

5.1. Temperature field ..................

The temperature field and the interface shape in the vertical Bridgman-Stockbarger (VBS) configuration

are shown in Figures 11 and 12. Contrary to the tendency of the interface deflection in the gradient freeze

technique to increase only slightly during solidification, the shape and deflection of the interface in VBS are

changed drastically by freezing (Fig.12a lor Brid-I and Fig.12b for Brid-II configurations). The position of the

interface relative to the insulation zone is very critical to the temperature distribution near the interface. The shape

of the freezing interface changes from convex to concave with translation of the ampoule down through the

furnace.

Decreasing the length of the adiabatic zone causes the freezing interface to become more concave

(Fig. 12c), independent of the temperatures of the hot and cold zones.

Decreasing the gap width causes the freezing interface to become more concave, similar to the gradient

freeze configuration (Fig. 12d). Thus, it is likely that this trend does not depend on the furnace temperature profile.

A reduction in ampoule diameter causes the freezing interface to become more convex (Fig.12e for Brid-I

and Fig.12f for Brid-II configurations). Quantitatively, the influence is more pronounced in the latter stages of

solidification, especially for the Brid-II configuration with the lower temperatures.

12



5.2. Buoyancy-driven convection

The interface shape depends strongly on its position in the furnace. Here, the freezing interface is planar

or slightly convex in the early part of the solidificatiop. With the ampoule high in the furnace, the flow in the melt

is directed downward along the axis of symmetry and upward along the ampoule wall. With continuing lowering ef

the ampoule, a change in the sign of the radial temperature gradient near the interface causes the convective flow

to change its direction. First, the convective cell splits into two cells with opposite directions of rotation. Further, a

new vortex appears close to the interface, spreads u_ward, and absorbs the old one. The resulting flow has a

direction that is downward along the ampoule wall and upward along the axis. Figure 13a shows two cells for the

growth ampoule in the middle of the furnace (see Figure 2). Lowering the temperature of both cold and hot zones

;cads to the appearance of the seco,d cell at a later stage of solidification, i.e. when the upper part of the ampoule

is in the insulation zone (see Figure 13b where the second cell has not yet appeared). On the other hand, since a

shorter insulation zone results in a more concave interface, the transition of the flow (splitting into two cells) takes

place at an earlier stage of solidification, i.e. tbr the bottom end of the ampoule nearer the insulation zone.

For the Bridgman configuration, the critical Rayleigh number (defined by (13)) for the transition to

circulating convection is lower than for the gradient freeze furnace.

5.3. Concentration field

Contrary to the behavior in the gradient freeze configuration, the interface shape changes considerably

with time as the ampoule is lowered. The resulting change in the convection pattern influences the solute

concentration distribution. The concentration fields for different thermal configurations (Brid-Ib and Brid-IIb) are

shown in Figures 14 a,b. The flow in a cell near a concave freezing interface has an upward direction along the

axis of symmetry. Under these conditions, the maximum of gas concentration along the interface is near the axis of

symmetry for all g, see Figure 15a (Brid-Ib configuration). The concentration gradient at the meniscus (see

Fig.16a) decreases with increasing g, similar to the gradient freeze configuration. With lowering of the ampoule
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position,onecellremainsin themelt,withthedirectionofflowdownwardalongtheampoulewall.In thiscase,

themaximumof gasconcentrationremainsattheaxis.

Anotherbehavioris observedfor theBrid-IIconfiguration.Correspondingto theflow;fieldshownin

Figure13b,themaximumof gasconcentrationalongtheinterfaceis nearthemeniscus(Figure15b).Moreover,

theconcentrationgradientatthemeniscusincreaseswithincreasingguptoacertainlevel(Fig.16b).Asshownin

Figure17,forgfrom10 -4 to 10 2 go, convection causes the total gas flux to increase from the value at 10 .6 go, reach

a maximum, and then decline. At the maximum, convection provides gas transfer into the gap at higher

accelerations than all the others considered in this paper.

5. DETACHED SOLIDIFICATION ON EARTH --

We have seen that detached solidification on earth should be possible. In addition to the

requirements given in [ 1 ], we find here that convection must transport enough additional gas into the gap to

counterbalance the hydrostatic head.

Recent experimental results at NASA's Marshall Space Flight Center corroborate this view [23].

Germanium was solidified upward in a mirror furnace, allowing the ampoule to be viewed in the

neighborhood of the freezing interface. When a strong magnetic field was used, the solid was in contact

with the quartz ampoule wall. On the other hand, without a magnetic field, detached solidification occurred

in one experiment. The appearance corresponded to our model [ 1-3]. The gap was about 30 _m wide and

27 mm long, and the freezing interface was slightly convex.

Our interpretation of the MSFC experiments described above is as follows. Detached solidification

in space has been realized with germanium several times [24-34]. With a magnetic field applied on earth,

the transport of dissolved residual gas into the gap was too-small to compensate for the hydrostatic head.

On the other hand, with a slightly convex interface, the melt flowed outward along the interface toward the
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wall.Convectivemasstransferwas,apparently,sufficientlyhightoincreasethegaspressurein thegapand

maintainthemeniscusshaperequiredfor stabledetachedsolidification.

6. CONCLUSIONS

In the presence of a _vdrostatic head, the transport of a volatile species into the gap must be increased in

order for detached solidification to eccur with the same gap width.

The influence of gravity on steady-state dissolved gas transport in the melt was studied in this paper. From

the numerical modeling it was found that the most critical indication of the gas flux from the melt into the gap is

the shape of the freezing interface. A convex freezing interface provides convective mass transfer from the axis to

the meniscus along the interface. This mechanism enhances mass transfer across the meniscus only up to a certain

level of convection, at which it reaches a maximum value. Stronger convection causes bulk mixing and reduces the

concentration along the entire freezing interface. Correspondingly, the normal gradient of concentration at the

meniscus is reduced. Thus, fbr a convex interface, convective mass transport supports detachment only till a certain

level of convection is reached.

On the other hand. a concave freezing interface causes the opposite direction of convective flow. In this

case the mass transfer of gas into the gap decreases with increasing convection. All levels of convection weaken

mass t, ansport and, therefore, inhibit detachment.

Since a convex interface can be produced by solidification in VBS furnaces, this configuration is more

favorable for reaching detached solidification at non-zero gravity than the gradient freeze configuration, where a

convex interface is not normally attainable. In the VBS technique, the most favorable configuration is one with

lower temperatures in the hot and cold zones. A longer adiabatic zone in the furnace keeps the freezing interface

planar or slightly convex for a longer time during solidification, favoring detached solidification. So does a smaller

ampoule diameter.

A lower freezing rate should cause detached solidification with a smaller value of the gap width [2]. The

result is less influence of hydrostatic pressure. Therefore, a low solidification rate would favor the observation of

detached solidification on earth.
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Followingarethemeansbywhichtheproperconvectiveflowcanbeestablishedto aidin achieving

detachedsolidification.The optimal flow rate would increase with increasing VJD.

I. Concave freezing interface.

A. Strong curvature of interface.

i. Micro_avity with residual g vector up (inverted furnace).

2. E_a-th's gravity with rotation of ampoule about its axis just above the critical rotation rate for

flow reversal [35].

3. Earth's gravity with inverted furnace and moderate magnetic field applied.

B. Slight curvature of interface.

1. Inverted furnace on earth.

2. Same as 2 above, with critical rotation rate lower.

3. Same as 3 above, with lower magnetic field.

II. Convex freezing interface

A. Strong curvature of interlace.

I. Microgravity with residual g vector down.

2. Earth's gravity with moderate magnetic field applied.

B. Slight curvature of interface.

I. Earth's gravity.

In the VBS technique, the interface shape can be adjusted via the heater and cooler temperatures. Lower

temperatures cause the interface to become more convex / less concave. In the gradient freeze technique, on the

other hand, one has little control over the concave interface shape. In both techniques, increasing the freezing rate

causes the interface to become more concave.
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Table1.Parametersusedinthenumericalcalculations.SomedataareforInSb.whileotherswereassumed.

Parameters Symbol Value

Thermalconductivityof
melt

Thermalconductivityof
solid

Thermalconductivityof
quartz

Thermalconductivityof
gasinthegap

Latentheatof
solidificationperunit

volume

kl

k S

ka

kg

Q

1.3"10 6

ergJ(cin*K*s)

2* 104

erg/(cm*K*s)

1.3.101°

erg/cm 3

Freezing rate Vc 10 .4 cm]s

Diffusion coefficient of

dissolved gas in melt D 10-5 cm-'/s

Segregation coefficient of

dissolved gas at the k 0.03
solidification interface

Average temperature of
gas in the gap Ta,, 800 K

Meniscus surface tension _ 430 erg/cm 2

Contact angle of melt on 0 112 degrees
quartz

Growth angle cto 25 degrees

Density p 6.4 g/cm 3

Volumetric thermal [3v 10 "4 K "1

expansion coefficient

Acceleration due to gravity go 981 cm/s 2
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Table2.Thermalconfigurationsusedinthenumericalanalysis.

T_(K) Th(K) Furnace

temperature

gradient(K/cm)

Length(L_)andpositionof the
insulatedzonerelativetothe

7.mpoule

Heattransfer.coefficient

betweentheampoulewall

andthefurnacewall(ergs1
cm-2K-I)

Grad- I 780 830 12.5 2.106

Grad- II 765 815 12.5 2"106

Grad-III 780 830 12.5 2*105

Brid- I 780 830 2.106

765

780

Brid- II 815

830

815

Brid-III

Brid-IV

La= 1/3L ;
a)from1/9L to4/9L;

b)from3/9L to6/9L:

c)from5/9L to8/9L

L_= 1/3L ;
a)from1/9L to4/9L;

b)from3/9L to6/9L;

c)from5/9L to8/9L

I__=1/9L ;

from4/9L to5/9L (center)

L_= 1/9L ;

from4/9L to5/9L (center)

765

2.106

2"106

2"106
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APPENDIX

Asymmetric Weighting Functions for Finite Difference Equation in Cylindrical

Coordinates

Assuming that the operator L is:

a: a 2 1 a V< a % a
L = _x'- -_'_-r2 + r c3r D ax D igr (A.1)

the weak form of equation (7) is:

j'j( 3_C 3 2C(w,,,cc)= w,,aT, +w,,aT_ Wq i)C Wq V< _C Wq V 3C'ldxd r
)r _r D 3x D _9r

(A.2)

Here Wij is an asymmetric weighting function, with the form:

Wq(x,r) = (Ni(x) + _ .ni(x) )(N j(,') +- rl .aj(f) ) (A.3)

where (+)refers to x _ [xi_t,xi] and r _ [rs_l, rj ], and (-)refers to x e [x;,xi+ I ] arid r E [rj, rj.i..i ].

According to equation (9), _ and q are positive if the local velocities Vx and Vr are positive in the defined

coordinate system, and are negative if the respective components of velocity are less than zero. Here Nj are linear

weighting functions with the form:

r-rs-' for x_[xi_t,xi] and re[rj_,,rjJ (A.4a)Ni(x ) _ x - xi_ I and Nj(r) -
xi - x,_ I rj - r__,

Ni(x)-xi+'-x and Nj(r)- ri+'-r for x_[xi,xi+,] attd ra[rs,rj+,] (A.4b)
Xi+ I --X i rj+ I -- rj

The asymmetric parts of the weighting functions are represented as:

ni(x) =-3(x-xi-')(x-xi) and nj(r)= 3(r-r_-I)(r-rj) for
(xi -x/__) e (rj - rj_t) 2

xE[xi_l,x,] and rE[rj_,,rj]; (A.5a)

n,(x) = -
3(x- x i)(x- xi+ I

)2 and ns(r) =(x,÷, - x, %÷, - rj )2

3(r- r_)(r - rJ+t) for

X _ [xi_l,:,ci] and

The integration in the space of weighting

corresponding to grid points in the finite difference

[r,_,,r,]. O,.,b)
functions over x and r can be carried out at five points,

scheme. In this case, the weighting function W0(x,r) can be

separated in such a way that it depends only on x for integration over x and depends only on r for integration over

r. In the Galerkin method, weighting functions without asymmetric parts are also used for the representation of the

unknown function in the nodal coordinates.
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Weusethefinitedifferencediscretizationoftheellipticequation(7):

A,.C,__.j + ArCij_ j + BCi. j + E.,.Ci+l. j + ErCi.j+ _

where the coefficients in (A.7) are:

(A.7)

Deriving the integrals:

rj-'ln( rJ ) [
i V, 1 A, =-1(1]+I)-- _- _.rj__j )'1"IA, =-_(,_ + l) D hi_ , h,_,'

E=__<,_,>v, E=_2'_o__,><r,+,,n(,r,,,r'"--'1
" D h i D hi-

'',-,r,'°(r'I
3 rj_, +rj k.r__,)

) 2

2 nj__ hj__ 3

3 rj + rj+,
+rl 2 hi"

3.rjrj+_ ln( rj+t ]

hj 3

These coefficients were used in the numerical calculations for discretization of (7) into (A.6).

(A.8)
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NOMENCLATURE

Latin letters

C

D

e

g

h

jmol

k

- Concentration of dissolved gas in the melt [mote cm3];

- Diffusion coefficient of dissol,,ed gas in the melt [cm-" s-t];

- Gap width [cm];

- Acceleration of gravity [cm s--'];

- Heat transfer coefficient between outer ampoule wall and furnace ambient [erg cm 2 s-_ K'l];

- Molar flux per length of the meniscus line in the axisymmetric case [mol s l cml];

- Segregation coefficient of dissolved gas between solid and melt:

k_,kg,ks,k_ - Thermal conductivities of the phases (liquid. gas. solid, and ampoule material) [erg cm -I s l Kt];

la

n

pm

P,*.

Ape

Aph

r

R

R_

Q

S

S

T_

- Length of the meniscus line [cm];

- Length of the column of melt [cm];

- Nomlal direction at the meniscus, inward toward the melt (Fig.3) [cm];

- Pressure over the column of melt, assumed to be the same at L_ [dyne cm-2];

- Pressure of gas in the gap [dyne cm-'];

- Pressure difference across the meniscus between the gap and the adjacent melt due to meniscus

curvature, Pg-Pm [dyne cm2];

- Hydrostatic head over the meniscus, pgLm, [dyne cmZ];

- Radial direction [cm];

- Ideal gas constant. 8.314"107 [ergmol -* K'_];

- Inner ampoule radius [cm];

- Latent heat of solidification per unit volume [erg cm-3];

- Direction along the meniscus [cm]; s=0 is at the freezing interface;

- Area of the meniscus [cm2];

- Temperature of the cold zone [K];

Th - Temperature of the hot zone [K];
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Tf

Tgap

V_

W

Z

- Temperature of the freezing interface [K];

- Average temperature of gas in the gap [K];

- Solidification rate [cm s-_];

- Weighti_:g tunc;ion:

- Axial direction [cm];

- Interface deflection from ptanarity

Greek letters

O_

_o

@

P

V

,4!

OJ

q

- Angle between the meniscus line and the axial direction at the three-phase line (Fig.2) [rad];

- Growth angle [tad];

- Volumetric thermal expansion coefficient [K'_];

- Contact angle of the melt at the ampoule wall [rad];

- Density of the melt [g cm3];

Kinematic viscosity of the melt [cm 2 s-t];

Thermal diffusivity of the melt [cm -_s-t];

- Surface tension of meniscus [dyne cml];

- Stream function [cm 3 s-I];

- Vorticity IsJ]:

- Coefficient in the representation of asymmetric weighting function (equation (9));

- Coefficient in the representation of asymmetric weighting function (equation (9));

Subscripts

a

arab

C

f

g

h

- Ampoule (within the wall);

- Ambient (in the furnace);

- Cold zone;

- Freezing in:erface:

- Gas;

- Hot zone;
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1 - Melt(liquid):

s - Solid.

DIMENSIONLESS PARAMETERS

Pr

Sc

Re Io¢

pe Io¢

Ra

= v/K - Prandtl number. Ratio of kinematic viscosity to thermal diffusivity

p,_int);

= v/D

point);

= V_°C*RJv - local Reynolds number. Dependent on local velocity field;

= ReJ°C*Sc - local mass transt'er Peclet number. Characterizes the ratio of convective mass transfer to

diffusion mass transfer.

= [3g(Th-Td(R_4/Lm)/v_: - Rayleigh number

- 0.04 for InSb at melting

- Schmidt number. Ratio of kihematic viscosity to diffusion coefficient (- 360 for InSb at melting
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FIGURE CAPTIONS

Fig.l.

Fig.2.

Fig.3a.

Fig.3b.

Fig.4a.

Fig.4b.

Fig.5a.

Fig.5b.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

Model of detached solidification with acceleration g. "-,

Furnace configurations modeled here. Solidification is caused by slowly decreasing the temperature in the

vertical gradient freeze technique (VGF), and by slowly lowering the ampoule in the vertical Bridgman-

S',ockbarger (VBS'_ method.

Isotherms calculated for VGF without detachment. AT between the isotherms is 0.83 K. Freezing rate is

10 -4 cm/s.

Isotherms calculated for VGF with a gap width e of 0.12 cm. All parameters are the same as in Figure 3a.

The interface shape in VGF without detachment. Note that the vertical scale is greatly magnified.

The interface shape in VGF with a gap width e of 0.12 cm.

Streamlines/'or the VGF Grad-I thermal configuration with acceleration g from 10s to 10 .2 go. The

spacing between streamlines A_ is not constant, but increases with g. These figures depict the flow

pattern only.

Streamlines for the VGF Grad-III thermal configuration with acceleration g from 10-5 to 10z go. The

spacing between streamlines Agt increases with g.

The dependence of the maximum local mass transfer Peclet number on the Rayleigh number in VGF. The

value of Pe begins to increase at the flow transition from linear to circulating convection.

The concentration field for the VGF Grad-I thermal configuration versus acceleration. Note that the

horizontal scale is expanded by a factor of 2.9. The spacing between isoconcentration lines is AC=2* 10 .8

mol/cm 3.

Radial concentration profile at the freezing interface for different accelerations (VGF Grad-I thermal

configuration).

Normal gradient of concentration along the menisGus for different accelerations (Grad-I). A positive value

causes diffusion into the gap. A negative value produces back-diffusion from the gap into the melt.

The dependence on acceleration of the total gas flux jmol into the gap (equation (14)), normalized by the

diffusion coefficient D, for VGF Grad-I and Grad-III.
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Fig.lla IsothermscalculatedfortheverticalBridgman-Stockbarger(VBS)configurationBrid-Iwithagapwidthe

of0.12cm.Thelengthoftheinsulationzoneis 1/3ofthesamplelength. _

Fig.1lb IsothermscalculatedforVBSBrid-IIwithagapwidtheot0.12cm.Thelengthoftheinsulationzoneis

1/3of thesamplelength.

Fig.12a.InterfaceshapeinVBSBrid-Ifordifferentpositionsofampoulerelativetothe insulationzoneasgiven

inTable2.Thegapwidtheis0.12cm.Notethattheverticalscaleisg:eatlymagnified.

Fig.12b.InterfaceshapeinVBSBrid-IIfordifferentpositionof theampoulerelativeto theinsulationzoneas

giveninTable2.Thegapwidtheis0.12cm.

Fig.12c.InterfaceshapeinVBSBrid-IandBrid-IIfortwodifferentlengthsoftheadiabaticzone(seeTable2).

Thegapwidthe is0.12cm.

Fig.12d.InterfaceshapeinVBSBrid-IIfordifferentpositionsoftheampoule.Thegapwidtheis0.05cm.See

Table2fora.bandcconditions.

Fig.12e.InterfaceshapeinVBSBrid-Ifordifferentpositionsof theampoule.Thegapwidthe is0.12cm.The

ampouleradiusis0.5cm.

Fig.12f.InterfaceshapeinVBSBrid-IIfordifferentpositionof theampoule.Thegapwidthe is0.12cm.The

ampouleradiusis0.5cm.

Fig.13a.StreamlinesforVBSBrid-Ibthermalconfigurationwithaccelerationfrom104to 10z go.Thespacing

betweenstreamlinesA_increaseswithg.

Fig.13b.StreamlinesforVBSBrid-IIbthermalconfigurationwithaccelerationfrom104to10.2go.Thespacing

betweenstreamlinesA_ increases with g.

Fig. 14a. The concentration field for VBS Brid-I thermal configuration versus acceleration. Note that the

horizontal scale is expanded by a factor of 2.67. The spacing between isoconcentration lines is AC=2* 10.8

mol/cm 3.

Fig. 14b. The concentration field for VBS Brid-lI thermal conf_uration versus acceleration. Note that the

horizontal scale is expanded by a/'actor of 2.1. The spacing between isoconcentration lines is AC=2* 108

mol/cm 3.
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Fig.15a.RadialconcentrationprofileatthefreezinginterfaceforVBSBrid-Ithermalconfigurationatdifferent

accelerations.

Fig.15b.RadialconcentrationprofileatthefreezinginterfaceforVBSBrid-I!thermalconfigurationatdifferent

accelerations.

Fig.16a.ThenormalgradientofconcentrauonalongthemeniscusforVBSBrid-iatdifferentaccelerations.A

positivevaluecorrespondstodiffusionintothegap.A negativevalueproducesback-diffusionfromthe

gapintothemelt.

Fig.16b.ThenormalgradientofconcentrationalongthemeniscusforVBSBrid-Iatdifferentaccelerations.A

positivevaluecorrespondstodiffusionintothegap.A negativevalueproducesback-diffusionfromthe

gapintothemelt.

Fig.t7. Thedependenceonaccelerationofthetotalgasfluxjmoiintothegap(equation(14)),normalizedbythe

diffusioncoefficientD,forVBSBrid-IandBrid-II.
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